EQUILIBRIUM EFFECTS OF PAY TRANSPARENCY*

ZOË B. CULLEN AND BOBAK PAKZAD-HURSON

March 2, 2018

Click For Latest Version

Recent policies making wage information more transparent within the workplace challenge the norm of pay privacy. The public conversation about salary disclosure largely ignores its equilibrium effects: how an increase in transparency can change hiring, wage-setting, and bargaining processes. We isolate these effects by combining the predictions of a dynamic wage bargaining model with a unique administrative data set of temporary labor arrangements, in which pay transparency varies across jobs. We find that increasing pay transparency shifts surplus away from workers and toward their employer. Greater transparency also decreases unemployment and earnings inequality. Increasing pay transparency by creating work environments that allow workers to discuss wages can exacerbate the gender pay gap as men compare wages more often. External intervention may be necessary to maintain a socially desirable level of transparency. We conduct a field experiment on internet workers to corroborate our findings and test an alternative model in which wage compression is driven by social aversion to observed wage inequality; our findings are inconsistent with this alternative model.

Keywords: Pay Transparency, Online Labor Market, Dynamic Bargaining, Field Experiment

JEL Classification Codes: C78, C93, D47, D83, J21, J33, J78, L22

*We are very grateful for guidance from Ran Abramitzky, Susan Athey, Nick Bloom, Matt Jackson, Fuhito Kojima, Ed Lazear, Luigi Pistaferri, Al Roth, and Gavin Wright. We are indebted to James Flynn for technical support. We also thank Mohammad Akbarpour, Lint Barrage, Jose Maria Barrero, Doug Bernheim, Eric Budish, Gabriel Carrol, Arun Chandrasekhar, Kalyan Chatterjee, Isa Chaves, Bo Cowgill, Piotr Dworczak, Jack Fanning, Chiara Farronato, Matt Gentzkow, Avi Goldfarb, Bob Hall, Gregor Jarosch, Scott Kominers, Maciej Kotowski, Vijay Krishna, Jon Levin, Shengwu Li, Erik Madsen, Davide Malacarno, Alejandro Martinez, Paul Milgrom, Muriel Niederle, Kareen Rozen, Ilya Segal, Isaac Sorkin, Jesse Shapiro, Bryce Millet Steinberg, Takuo Sugaya, Catherine Tucker, Emmanuel Vespa, Alistair Wilson, and various seminar attendees for helpful comments and suggestions. We appreciate TaskRabbit for providing essential data access. Pakzad-Hurson acknowledges financial support by the B.F. Haley and E.S. Shaw Dissertation Fellowship through a grant to the Stanford Institute for Economic Policy Research. This paper subsumes two earlier drafts: Equal Pay for Unequal Work? and Is Pay Transparency a Good Idea?.
I. Introduction

Individuals value privacy in many facets of their lives, but no workplace information is as guarded as pay (Goldfarb and Tucker, 2011). Recently, the norm of pay privacy has been challenged by internet outlets and policies that increase the transparency of salaries within firms. The first legislative steps have been to protect the right of co-workers to communicate pay information and extend the time frame during which information from peers is permissible as court evidence of pay discrimination. Following the signing of the 2009 Lilly Ledbetter Fair Pay Act, which removed the statute of limitation for pay discrimination law suits, the federal government has prohibited federal contractors from punishing workers who discuss pay at the workplace, and several states have passed similar laws (including California and Massachusetts in 2016). The stated purpose of these laws is to ensure that “victims of pay discrimination can effectively challenge unequal pay” through negotiations, by informing them of their employer’s willingness to pay for labor (Phillips, 2009).

However, the debate around increasing pay transparency has paid little attention to equilibrium effects, namely how firms might change their hiring and wage-setting policies in reaction to transparency mandates and how workers might adjust their initial salary negotiations when their salaries are less private. It also lacks a theory as to why some firms institute transparent pay structures in the absence of any mandate at all. Our research aims to fill this void.

In this paper, we combine empirical analysis of local contract workers and their employers with an equilibrium model of dynamic wage negotiations tailored to our empirical setting. The marketplace and our model both have the following key characteristics: workers do not initially know their value to their employer; workers initially bid on a job, and if hired, can engage in on-the-job wage renegotiation to raise pay above the initial bid; workers learn much they can obtain by renegotiating from the wages of their peers; and pay transparency varies by job, based on natural communication channels, as well as employer wage disclosure policies, affecting how quickly workers learn the pay of their peers. Workers and employers in our sample find each other and transact over an online platform, TaskRabbit, which specializes in homogeneous, low-skill, household tasks, and is active in 19 U.S. cities between 2010 and 2014.

We assess the equilibrium costs and benefits of increasing pay transparency along three dimensions: wage equality, employment level, and the split of surplus between workers and firm. We find that increasing transparency compresses wages of similarly productive workers. Some transparency increases employment, but too much reduces employment. Higher transparency shifts expected surplus away from workers and toward the firm. We also find that regulation may be necessary to ensure socially-desirable transparency levels.
To make these claims, we propose and analyze a simple model of dynamic wage negotiations, many specifics of which are based on institutional details of TaskRabbit. Nevertheless, its simplicity allows for many generalizations and extensions which preserve our main findings, as we discuss in the Appendix.

Formally, we study a continuous time game between a continuum of workers and a firm(s).\(^1\) Bargaining takes the form of directed take-it-or-leave-it (TIOLI) offers from each worker to the firm, as in TaskRabbit, and akin to a phenomenon in the general labor market where workers are asked to declare their salary expectations. Once employed, workers are able to renegotiate with the firm at will, but workers whose initial offers are rejected are permanently unmatched with the firm and receive their heterogeneous, exogenous outside options.\(^2\) Over time each worker stochastically learns the wages of her peers, and the level of transparency affects the rate at which this information arrives. The firm has a value for labor which is common across workers, but unknown to the workers.\(^3\) Therefore, seeing the pay of a higher paid co-worker is an indication of being underpaid.

We study the unique equilibrium in which the maximum wage a firm is willing to accept is a linear function of its value for labor. In it, workers initially bid a linear premium over their outside options. Regardless of the level of transparency, workers will only choose to renegotiate their wage once they learn the wage profile within the firm, at which point they (successfully) demand pay that is equal to that of the highest earning worker. Therefore, transparency causes an information externality; if a worker discovers her colleague receives a high wage, she will use this information to negotiate a higher wage for herself. This affects the way that initial wages are set.

There are two major equilibrium effects of increasing transparency: a demand effect and a supply effect. The demand effect reduces the firm's willingness to pay for labor. Over time, higher transparency increases the chances of information spillovers across workers. As such, the firm commits to paying lower wages at the onset of the game; the highest wage the firm pays is strictly decreasing in transparency. In equilibrium with a fully private pay structure where workers never learn the pay of their peers, the firm accepts all wage offers that are weakly less than the value of labor because there are no information spillovers. In equilibrium with full transparency the firm picks a maximum wage, and workers learn this value immediately upon matching with the firm. Each worker will either choose to work at this wage, or instead select her outside option. Therefore, the equilibrium outcome under

\(^{1}\) For simplicity, we initially present our model as containing a single firm. We generalize and extend our results to the case with multiple firms in Appendix C.

\(^{2}\) Farrell and Greig (2016) find that online labor platform users earn on average one-third of their total income on platform, leading to heterogeneous outside options based on earnings off the platform.

\(^{3}\) We discuss in Section II how the analysis is unchanged if we instead assume that workers have different productivities but know relative productivity differences.
full transparency is essentially the same as a monopsonistic firm that uses a posted wage.

Making a higher initial offer is risky for workers, as being rejected leads to lack of employment. A worker can mitigate this risk by making a low initial offer, and wait to renegotiate, risklessly, once she learns the wages of her coworkers. The supply effect leads a worker to offer lower initial wages when pay is more transparent, as she expects to quickly learn the pay of her peers. The premium a worker offers over her outside options converges to zero in the limit of full transparency.

The wage gap between workers with high and low outside options initially increases with higher pay transparency. The supply effect causes all workers to lower their initial wage offers, but workers with low outside options to reduce their initial offers more. Over time, each worker becomes more likely to receive wage information and negotiate for the highest wage the firm accepts, equalizing workers’ earnings. This latter effect dominates in the long run, leading to more equal expected discounted lifetime earnings as transparency increases.

The combination of supply and demand effects lead to a non-monotonic overall effect of increasing transparency on the expected employment rate. When transparency is low, the supply effect dominates, so fewer workers are rejected by the firm because they over-negotiate, leading to more employment. Increasing transparency beyond a certain point, however, causes the demand effect to dominate—the firm to reduces its highest acceptable wage more than workers reduce their initial offers, leading to less employment. We show that the expected employment rate is concave with respect to transparency and single-peaked, resembling a Laffer curve. This implies that either full privacy or full transparency is expected employment minimizing. An intermediate level of transparency, in which workers learn about other’s wages stochastically after joining the firm, maximizes the expected employment rate. We also show that a higher level of transparency is more effective at raising the employment level when the firm’s draw for value of labor is low, suggesting that transparency mandates will be more effective at creating low-paying jobs in a particular industry.

Pay transparency also changes the division of surplus between workers and the firm; both the supply and demand effects shift bargaining power away from workers and toward the firm, benefiting the firm at the workers’ expense. Consider the equilibrium outcome under full transparency. As we have previously stated, this outcome is equivalent to that of a posted wage. Therefore, full transparency shifts the de facto bargaining power to the firm by allowing it to effectively make a TIOLI offer to workers. It is well-known this maximizes firm expected profits and minimizes worker expected surplus (Myerson, 1981; Williams, 1987). We find that this intuition holds for intermediate levels of transparency as well; increasing pay transparency increases expected firm profits while decreasing expected worker surplus.

A policy maker can select an “optimal” ex-ante level of pay transparency, by weighing these three criteria: pay equality, the employment rate, and the division of surplus between
the firm and workers. However, the firm may be able to exert some control over pay privacy on site, and workers may be able to choose the degree to which they seek out or ignore wage information. A firm also knows its own value of labor better than a policy maker.

We turn our attention to the level of transparency selected by a profit-maximizing firm in the absence of regulation. The choice of transparency signals the firm’s value for labor, which in turn affects workers’ negotiation tactics. This leads to a unique equilibrium outcome in which the firm pools on full transparency regardless of its value of labor. The cause of this is the phenomenon of unravelling (Milgrom, 1981). In any alternative scheme, the lowest value firm type that maintains pay privacy earns zero profits, as workers will always offer no less than this firm type’s value for labor in their initial negotiations. This firm type could deviate to full transparency, and post a price below its value to make positive profits, but this would result in a new “lowest value firm type” that receives zero profits when it adheres to equilibrium strategies. This logic unravels toward the firm choosing full transparency for any value. Allowing workers to opt out of learning the wages of their peers does not change this result as they are unable to commit to ignoring wage information, and in equilibrium, will always seek out the wages of their peers as much as possible.

We use detailed, back-end data from TaskRabbit from 2010 to 2014 to test our theoretical predictions. This setting uniquely allows for study of the wage-determination process in an environment largely devoid of career concerns and non-pecuniary benefits. We observe all transactions on the platform over this time period, as well as job postings, worker bids, on-the-job bonuses, employer ratings of workers, worker and employer demographics, and cancellations. The amount of pay transparency varies by the ability of co-workers to communicate about pay on the job and by salary announcements in the job posting. For example, in some multi-worker jobs, workers are co-located packing boxes in the same office where they might share wage information, and in others they are physically separated distributing marketing materials to different vendors and are therefore unable to share information about their pay. Some employers choose to use a transparent posted price to advertise their job, and others accept private bids from interested workers. TaskRabbit staggered its entrance into metropolitan areas, allowing us to analyze the evolution of multiple marketplaces starting from their origin.

We also conduct a field experiment in which we randomize the level of pay transparency between co-workers. We hire 347 managers and 1047 workers from an online labor market who are tasked with negotiating wages for a real-effort task. We vary transparency by restricting wage negotiations to either a common chat room containing a manager and multiple

Wage bargaining and transfer of information via transparency are common in many labor markets. Hall and Krueger (2012) find that one-third of workers surveyed explicitly bargain when accepting a job, one-third face posted wages set by their employers, and nearly one-half report that previous wages were used to set current wages. We observe both types of wage-setting, in similar proportions, in TaskRabbit.
workers, or separate each worker into a private chat room with the manager. The experiment relies on free-form bargaining between workers and managers, which differs from the bargaining protocol in TaskRabbit. The added control we have in this experiment allows us to directly measure worker outside options, productivity, and employer profits. It also lets us explore additional measures of interest, for example, compression in worker surplus in addition to compression in earnings.

We find the following in our empirical analysis, in both TaskRabbit and our field experiment, consistent with our model’s predictions.

Pay equity: Jobs with partial pay transparency, resulting from the ability of workers to talk with one another on the job, result in final pay that is on average two-thirds as dispersed than in jobs that are otherwise similar, but in which wages are private due to physical separation between workers. An illuminating fact is that the difference between workers’ initial bids, does not predict whether the employer will make adjustments to pay to reduce disparities. However, conditional on adjusting pay, the amount almost always closes the full gap between co-worker bids.

We find in our experiment that pay is nearly always equalized when workers negotiate in a transparent, common chat room, and rarely done so under privacy.

Employment: On average, the match rate is higher among jobs with transparent prices in the job posting. We show that as employer household income falls (a proxy for willingness to pay for the completion of household tasks), this employment response to transparency is larger.

In our experimental setting, we vary the marginal value of labor for the employer directly and confirm that transparency has a larger positive impact on the hiring rate when employers’ value for labor is high.

Profit sharing: While we cannot directly observe the profits of employers on the labor platform, we do observe the wage bill and the match rate of tasks. With more pay transparency, holding constant other job factors, the total wage bill is approximately 10% lower with no change in the likelihood of job completion.

We directly observe manager profits rise by 50% in our experiment when negotiations are moved from an environment of pay privacy to one of full transparency.

Endogenous transparency: TaskRabbit staggered its entry into metropolitan areas across the US. Across all markets, we observe a striking linear progression toward the use of transparent, posted wages month-over-month. For every month on the platform, the fraction of jobs using a transparent posted price increases by 1%. This trend is not
explained by the changing composition of jobs or employers on the platform, nor do we find evidence that this is caused by employer learning. This dynamic unraveling is consistent with the unraveling result from our theory.

We combine theory and empirics to run a horse race between our model and a competing theory of the social costs of pay inequality. The existing popular theory posits that workers face a morale cost after learning they are underpaid, resulting in low effort, leading proactive employers to increase the wages of these workers to recuperate high effort.

To assess the impact of morale in our model, we endogenize the cost of effort and include morale costs when workers learn they are paid less than coworkers, as in Breza et al. (2017). We show that only very extreme and discontinuous morale cost functions replicate two of our empirical findings: that renegotiation does not depend on the extent of the wage gap, and conditional on renegotiating wages are equalized. Indeed, these empirical patterns can only be explained if morale costs are so severe that all workers quit the job (expend 0 effort) upon finding out they are paid even small amounts less than a peer. We do find evidence in our field experiment that workers reduce effort, to some extent, after learning they are paid less than their peers, but most workers still exert positive effort.

Finally, we consider the effects of worker heterogeneity along gender lines. We elicit worker outside options in an incentive compatible manner in our field experiment and find that women have outside options on average approximately 10% lower than those of men. Bids for work reflect these differences. We find that the gender pay gap caused by this difference in outside options is mitigated by higher levels of transparency. However, we also find evidence that men talk about and learn wage information more often than women; men are more likely to receive bonuses than women when there are communication channels between workers on TaskRabbit. This is consistent with evidence that women are more private about pay and less likely to discuss their wages than men (Goldfarb and Tucker, 2011). We nest this privacy difference between genders into our model and show that intermediate levels of transparency can lead to very different arrival rates of wage information for men and women, potentially increasing the gender pay gap. This finding may be of interest to proponents of open communication channels about pay within firms as a way to mitigate the gender pay gap.

I.A. Related Literature

At the heart of our paper is the notion that wages may be tied to factors unrelated to productivity. Frank (1984) is an early paper that demonstrates this claim, and there has been a wide literature investigating the reasons for this phenomenon. Burdett and Mortensen (1998), Postel-Vinay and Robin (2002), Postel-Vinay and Robin (2006), Cahuc
et al. (2006), and Bagger et al. (2014) explain wage dispersion using search models: similar workers naturally receive different job offers over time due to randomness. Those who luck into better offers benefit compared to their unlucky peers. Therefore, wage dispersion in these models is endogenous to the arrival process of offers. Bewley (1999), Abowd et al. (1999), and, more recently, Song et al. (2016) show that wages within firms are compressed relative to the wages across firms.

There is also an empirical literature on the effects of pay transparency. This literature builds on the fair wage-effort hypothesis introduced to economists by Akerlof and Yellen (1990) which posits a morale cost and associated reduction of effort when a worker believes she is underpaid. Card et al. (2012), Mas (2016a), Mas (2016b) Perez-Truglia (2016), and Breza et al. (2017) conduct field and natural experiments on transparency, and document worker dissatisfaction upon learning of peers with higher pay. Charness and Kuhn (2004), (2007), Gächter and Thöni (2010), and Greiner et al. (2011) investigate similar claims in laboratory settings. Nevertheless, these papers do not explicitly investigate how (if at all) workers use information of higher paid co-workers to negotiate higher wages for themselves. We find evidence of a morale effect in our field experiment, although our findings are more consistent with a bargaining mechanism as the driver of the wage equalization we observe.

Economists have long studied bargaining, and including a comprehensive review of this literature is infeasible. Our paper most closely relates to the double auction literature beginning with a well-known paper by Chatterjee and Samuelson (1983). In this model, a buyer and a seller have private values for a particular good. Both agents simultaneously place bids, and if the bid of the buyer is higher than that of the seller, the two exchange the good at a price that is a predetermined convex combination of the two bids. Williams (1987), Satterthwaite and Williams (1989), and Leininger et al. (1989) further examine the equilibria of the double auction game. In an experimental study, Radner and Schotter (1989) show that linear equilibrium strategies are focal and often adopted by participants. Larsen (2015) empirically studies a related model using data from post-auction bargaining over used cars. Although the double auction model is a static bargaining game, we show a connection to the equilibria of our dynamic game. Therefore, double auctions appear to be a compact representation of a natural bargaining situation, and maximizing desirable properties within the realm of double auctions may be relevant to policy creation. Our main theoretical results are related to answering this type of question.

Our paper also relates to the literature on wage bargaining versus posted wages for jobs. As posted wages are the equilibrium outcome under full transparency in our model, and since the level of transparency is inversely related the amount of bargaining power workers have in equilibrium, our theory unifies many previous results and our empirical evidence corroborates these findings. For example: Michelacci and Suarez (2006) show that bargaining leads to
more dispersed wages (our Theorem 1); Ellingsen and Rosén (2003) find wage posting is more effective when reservation wages are low (an implication of our Theorem 2); Brenzel et al. (2013) suggest that firms, especially those with high labor productivity, prefer to post wages, while bargaining may lead to higher average worker wages (our Theorems 3 and 4.) Many economists have studied the effects of price transparency in goods markets. Faminow and Benson (1987), Kühn and Vives (1995), Alæk et al. (1997), and Nilsson (1999) demonstrate instances in which price transparency among consumers can lead to increased prices (and firm profits) due to collusion in oligopolistic settings. This mirrors our finding that transparency increases firm profits, although our result is not due to collusion between competing firms. More recently, there is a large literature on transparency in dynamic markets. Hörner and Vieille (2009), Fuchs et al. (2016), and Kim (2017) study the efficiency effects of price transparency in sales markets with asymmetric information. Kaya and Liu (2015) investigates the role of transparency on efficiency and division of surplus in a dynamic bargaining environment. Asriyan et al. (2016) examine the equilibrium effects of transparency when objects to be sold have correlated values, similarly to our model with a common value of labor. Moellers et al. (2017) experimentally study the effects of open communication in a dynamic bargaining environment with externalities.

The remainder of the paper is organized as follows. Section II lays out our theoretical model. Section III presents our main theoretical findings. Section IV describes the TaskRabbit market and contains empirical tests of our main findings using TaskRabbit data. Section V discusses our field experiment and related findings. Section VI examines an alternative model based on the fair wage-effort hypothesis and morale costs associated with pay transparency. Section VII investigates heterogeneity of workers across gender lines, and the effects of transparency on the gender pay gap. Section VIII concludes. Omitted proofs, regression tables, and extensions are contained in the Appendix.

II. Model

II.A. Preliminaries

Time is continuous, and is indexed by $t \in \mathbb{R}_+$. There is a single firm in the economy. At each time t, a mass of workers enters the market, and each existing worker exogenously departs the market via a Poisson process with rate ρ. Each worker i has a private outside option $\theta_i \sim G[0, 1]$, which is the flow payment i receives when not matched to the firm. Productivity of labor is $v \sim F[0, 1]$, which is common across workers, and is known only to

5We generalize our model to include multiple firms in Appendix C.
the firm. The firm has a constant returns to scale production function, and receives a flow surplus \(v \) from each employed worker. All agents exponentially discount the future at rate \(\delta \), are risk neutral, and seek to maximize discounted expected flow payments. We assume that \(F \) and \(G \) are twice continuously differentiable over the interior of their supports, with densities \(f \) and \(g \), respectively. We assume agents have strictly increasing virtual reservation values, i.e. \(\theta + \frac{G(\theta)}{f(\theta)} \) is strictly increasing in \(\theta \) and \(v - \frac{1-F(v)}{f(v)} \) is strictly increasing in \(v \).

At \(t = 0 \) (and before any workers enter the market) the firm selects a maximum wage it is willing to pay a worker \(\bar{w}(v) \in [0, 1] \), where the choice of \(\bar{w} \) is not immediately observed by workers. Each worker \(i \) bargains for wages by making an initial take-it-or-leave-it (TIOLI) offer \(w_{i,t}^* \) to the firm at the first moment she is hired, and can elect to make further TIOLI offers at any point during her employment, potentially renegotiating infinitely often. Two things can happen when a worker \(i \) makes a wage offer \(w_{i,t} \) at time \(t \). If \(w_{i,t} \leq \bar{w} \) then \(i \) receives a flow wage \(w_{i,t} \) for all time periods \(t' > t \) until she departs or attempts to renegotiate. If \(w_{i,t} > \bar{w} \) then \(i \) is permanently unmatched with the firm for all time periods \(t' > t \) and consumes her outside option until she departs.

Let \(W_t \) denote the set of wages the firm pays to currently employed workers at time \(t \). For convenience, we assume that \(W_t \equiv \bar{w} \) if the firm does not have any currently employed workers. We model transparency as a random arrival process; at time \(t \) matched workers observe \(W_t \) according to an independent Poisson arrival process with rate \(\lambda \in [0, \infty) \cup \{\infty\} \), where we take \(\lambda = \infty \) to mean that the process arrives at every time \(t \). This process can be thought of as the frequency with which there is an information leak, that existing workers see the offers of incoming workers, or of wage gossip between workers.

The timing of the stage game is as follows at each time \(t \geq 0 \):

1. New workers enter the market and are matched with the firm.

6 The assumption of a common \(v \) is made for ease of exposition. The analysis relies only on the assumption that workers can observe their relative productivities. We could complicate the analysis by supposing each worker has a known type \(\tau \in \mathcal{T} \) where \(\mathcal{T} \) is some countable set. Let \(v_\tau \sim F[0,1] \) i.i.d. but unknown to workers. The analysis is almost entirely unchanged, other than additional notation, with this modification. Similarly, we could allow for changes in (assessed) worker productivity as in Kahn and Lange (2016).

7 Clearly some bargaining friction must exist, or else workers could always ensure payments of \(\bar{w} \) arbitrarily quickly by starting at wage 0, and continuously increasing offers until the firm exceeding \(\bar{w} \) and getting rejected, then renegotiating for exactly that amount. The current assumption adds a draconian friction, but one that fits our context—i.e. initial wages are set through a bidding process (as in TaskRabbit), those who bid too high will be rejected without the ability to readjust the bid.

8 Without this assumption, the first cohort of workers in the full transparency equilibrium face an openness issue of wanting to renegotiate wages at the earliest time \(t > 0 \). It is also possible to complicate the timing of the game to resolve this issue, but at the expense of clarity.

9 For much of the paper, we abstract away from the genesis of this arrival process. We discuss endogenous information arrival in Section III.D, and differential rates of information arrival in Section VII. Alternatively, if workers are not able to initiate renegotiation at will (e.g. workers have to wait for a scheduled performance review to renegotiate), \(\lambda \) can be thought of as the rate at which workers both learn the wages of their peers and have the ability to renegotiate.
2. Each matched worker i learns W_t independently with arrival rate λ.

3. Workers bargain according to the protocol laid out above.

4. Existing workers depart independently at rate ρ.

In Appendix C we expand our model to allow workers to search for work across multiple firms, and show that many results are robust to this extension. In Appendix D we allow the firm to accept or reject each offer individually as it arrives, instead of picking a single \bar{w} at $t = 0$, and show that all results of this paper are unchanged under a proper selection of “Markov Perfect” equilibria. In Appendix E we discuss alternative bargaining protocols and show that our results are robust to these settings.

II.B. Equilibrium Selection

We investigate pure strategy perfect Bayesian equilibria (PBE) of the game. We restrict our attention to equilibria satisfying the following conditions:

A1 \bar{w} and w_i^* are strictly increasing and continuous functions of v and θ_i, respectively.

A2 $0 \leq \bar{w} \leq v$ for all v. If $v \leq w_i^*$ for every worker i according to equilibrium strategies then $\bar{w} = v$.

A3 $\theta_i \leq w_i^* \leq 1$ for all i. If there is no v such that $\theta_i \leq \bar{w}$ according equilibrium strategies then $w_i^* = \theta_i$.

A4 At any time t, any worker i who makes an offer $w_{i,t} > \bar{w}(1)$ and is not rejected believes with probability 1 that $\bar{w} = w_{i,t}$ until observing the wages of others via the transparency process.

A5 Along equilibrium path, if any worker i re-negotiations at time $t' > t$ then $w_{i,t'} > w_{i,t}$.

A1 limits our study to continuous equilibria, in which the highest wage the firm accepts (\bar{w}) and the initial wage offers of workers (w_i^*) are continuous functions of agents’ types. This removes equilibria in which workers and the firm pool on a predetermined wage from consideration.\(^{10}\) A2 and A3 restrict actions of agents who never match in equilibrium, because either the firm’s value for labor is too low or the worker’s outside option is too high. These assumptions rule out pathological equilibria in which, for example, $\bar{w} = 0$ and all workers choose $w_i^* = 1$.

\(^{10}\text{Leininger et al. (1989) suggest similarities between the set of continuous equilibria and a set of discontinuous equilibria of a game similar to our own, and so we do not believe this to be a conceptually limiting constraint. We discuss this similarity in Section II.D.}\)}
A4 deals with histories that do not occur in equilibrium, and pins down off-equilibrium-path beliefs. If a worker makes an offer that is higher than the highest offer the firm is supposed to accept in equilibrium, yet the offer is accepted, the worker believes she is extremely lucky and is receiving the highest possible wage until she is presented with evidence to the contrary. These are the most favorable beliefs to the firm allowable in a PBE, so any equilibrium sustainable under A4 is sustainable for any off-path beliefs.

A5 rules out a multiplicity of essentially equivalent equilibria in which workers “renegotiate” infinitely often by offering the same wage over and over again.

II.C. How do workers renegotiate?

Workers learn the wages of their co-workers over time and are able to initiate bargaining infinitely often if they wish. There is reason for concern in dynamic relationships of a “ratchet effect” (Weitzman, 1980) – that successful negotiation will lead to an increased desire on the part of workers to initiate bargaining in future periods. We find, however, that in equilibrium, a worker will renegotiate at most once.

Proposition 1. The set of equilibria is non-empty. In any equilibrium workers only renegotiate wages in the first instant they receive information about wages of co-workers. Upon renegotiating, workers offer and receive \bar{w}.

The key step in proving this result is showing that a worker does not learn exploitable information about \bar{w} if her initial offer is accepted. Any worker strategy that says “offer w when initially hired at time t and offer $w' > w$ at time $t' > t$ if I have not learned the wages of my co-workers” is not optimal, because if offering w' at time t' improves the expected utility of the worker, she would be even better off offering w' at time t.\(^{11}\)

Due to the continuum of workers entering the market at each time, in addition to our equilibrium selection criteria, workers trace out the entire set $[0, 1]$ with their initial offers at each time t. Therefore, the highest wage paid by the firm is \bar{w} for all $t \geq 0$. As a result, the maximum wage that any worker observes upon information arrival is \bar{w}. Clearly, a worker will then demand this amount from the firm.

II.D. Equilibrium conditions

We have just shown that in equilibrium, an employed worker will receive w^*_i for the initial periods she is employed before learning the wages of her peers, and \bar{w} thereafter. Therefore, we are able to use standard techniques to solve for the optimal bargaining strategies of agents.

\(^{11}\)This reasoning is shared in Tirole (2016).
Letting \(\bar{F}(x) = P(\bar{w} \leq x) \), and \(\bar{G}(x) = P(w_i^* \leq x) \), we show in Appendix B that each worker solves

\[
 w_i^* \in \arg\max_{w_i} \int_0^1 ((1 - \Lambda) w_i + \Lambda x - \theta_i) \bar{f}(x) \, dx \tag{1}
\]

and the firm solves

\[
 \bar{w} \in \arg\max_w \int_0^w (v - (1 - \Lambda) y - \Lambda w) \bar{g}(y) \, dy \tag{2}
\]

where \(\Lambda = \frac{\lambda}{\rho + \delta + \lambda} \) for all \(\lambda \in [0, \infty) \) and \(\Lambda \equiv 1 \) for \(\lambda = \infty \). \(\lambda \) is the arrival rate of information, and \(\Lambda \) is the effective level of transparency; a high rate of information arrival will be nearly irrelevant to workers if the discount rate \(\delta \) and/or departure rate \(\rho \) are sufficiently higher. For any \(\delta, \rho > 0 \) \(\lambda = \Lambda = 0 \) corresponds to full privacy, while \(\lambda = \infty \) and \(\Lambda = 1 \) correspond to full transparency. There are uncountably many combinations of parameters \(\delta, \rho, \) and \(\lambda \) that correspond to any \(\Lambda \in (0, 1) \). However, fixing \(\rho, \delta \), there is a bijection between \(\lambda \) and \(\Lambda \) with higher \(\lambda \) corresponding to higher \(\Lambda \).

These are the same objective functions as those in the well-known Chatterjee and Samuelson (1983) “double auction” in which a seller (worker) with a private value for a good \(\theta_i \) and a buyer (firm) with a private value for a good \(v \) submit sealed bids. If the bid of the buyer is at least as large as that of the seller, the good switches hands at a price set be a predetermined convex combination of the two bids (determined by \(\Lambda \)). Therefore, the equilibria of our model coincide with the equilibria of Chatterjee and Samuelson (1983), in which higher transparency shifts the average wage of employed workers toward the maximum wage set by the firm, \(\bar{w} \). The first order conditions for workers and the firm are, respectively:

\[
 w_i^* - \theta_i = (1 - \Lambda) \frac{1 - \bar{F}(w_i^*)}{f(w_i^*)} \tag{3}
\]

\[
 v - \bar{w} = \Lambda \frac{\bar{G}(\bar{w})}{\bar{g}(\bar{w})}. \tag{4}
\]

The set of equilibria corresponds to solutions of the first order equations, and given the equilibrium strategies of the firm (workers), workers (the firm) have a unique best response (Satterthwaite and Williams, 1989).
II.E. Solving for equilibrium

The optimal bidding and wage-setting policies of workers and the firm, respectively, are interdependent; workers decide how aggressively to bid depending on how the firm sets \(\bar{w}\), while the firm sets \(\bar{w}\) as a function of how aggressively the workers bid. Satterthwaite and Williams (1989) show that there exists a continuum of equilibria satisfying Equations 3 and 4. Our set lacks natural ordering, limiting the possibility for general claims about the entire set of equilibria. However, experimental evidence in Radner and Schotter (1989) suggests that equilibria in which \(w^*_i\) and \(\bar{w}\) are linear functions of \(\theta_i\) and \(v\), are focal and most likely to be played in practice. We produce similar evidence in a setting similar to TaskRabbit, shown in Figure A1. We use this evidence as our equilibrium selection criterion, and therefore, we focus our analysis on linear equilibria. To do so, we restrict attention to a two-parameter family of power law distributions of worker outside options and firm values, which we show admit a unique linear equilibrium.\(^{12}\)

We then study the properties of this equilibrium, and analyze the effects of transparency. The class of distributions we study are:

\[
\begin{align*}
F(v) &= 1 - (1 - v)^r, \quad r > 0 \\
G(\theta) &= \theta^s, \quad s > 0
\end{align*}
\]

(5)

As \(r\) increases, \(v\) is on average lower and as \(s\) increases, \(\theta\) is on average higher. Therefore, increasing \(r\) or \(s\) reduces the average surplus from employment. We define a linear equilibrium below and show that distributions of this type admit a unique linear equilibrium.

Definition 1. A linear equilibrium is a pure strategy perfect Bayesian equilibrium satisfying \(A1-5\), where \(\bar{w}\) is a linear function of \(v\) whenever a positive mass of workers offers \(w^*_i \leq v\), and where \(w^*_i\) is a linear function of \(\theta_i\) whenever there is positive probability that \(\theta_i \leq \bar{w}\).

Proposition 2. For any pair of distributions within the family described in Equation 5 there exists a unique linear equilibrium.

What can we say about the (linear) equilibrium bargaining strategies of workers and firms, and how are they affected by transparency? First, equilibrium wages lie in an interval \([a, h] \subset [0, 1]\), where \(a\) and \(h\) are functions of \(\Lambda, r\) and \(s\). Workers with \(\theta_i = 0\) will set \(w^*_i = a\) and the firm sets \(\bar{w}(1) = h\). This means that the firm will not hire any workers if it’s value is below \(a\) and all workers with outside options above \(h\) will remain unemployed. Second, we can see from Equations 3 and 4 that all workers and firm types with positive probability of matching in equilibrium charge a premium, that is, \(v - \bar{w} \geq 0\) and \(w^*_i - \theta_i \geq 0\).

\(^{12}\)The approach of making parametric assumptions to ensure linear equilibrium is common. One recent example on CEO pay is Edmans et al. (2016). Power law distributions are commonly observed in economic situations such as ours, including worker income and firm productivities. See Gabaix (2009, 2016) for details.
We show high outside option workers and low value firm types face higher risks of being unmatched in equilibrium. As a result, the markup charged by each worker is decreasing in \(\theta_i \) and the markdown set by the firm is increasing in \(v \). We further show that both \(\bar{w} \) and \(w^*_i \) are decreasing in \(\Lambda \); with increased transparency the firm reduces the highest worker offer it accepts to avoid information spillovers across workers (which we call the demand effect), and workers make more conservative initial offers as they anticipate quickly, and risklessly renegotiating and receiving \(\bar{w} \) (which we call the supply effect). We graphically represent the demand and supply effects in Figure I as \(\Lambda \) increases, and the following proposition formalizes these arguments.

Proposition 3.

1. \(v - \bar{w} \geq 0 \) and strictly increasing in \(v \) for all \(v \in [a, 1] \),

2. \(w^*_i - \theta_i \geq 0 \) and strictly decreasing in \(\theta_i \) for all \(\theta_i \in [0, h] \),

3. \(\bar{w} \) is strictly decreasing in \(\Lambda \) for all \(v \in [a, 1] \). As \(\Lambda \to 0, \bar{w} \to v \) for all \(v \in [0, 1] \), and

4. \(w^*_i \) is strictly decreasing in \(\Lambda \) for all \(\theta_i \in [0, h] \). As \(\Lambda \to 1, w^*_i \to \theta_i \) for all \(\theta_i \in [0, 1] \).

The decline of \(\bar{w} \) in \(\Lambda \) is similar to the strategy of a monopsonist that optimally limits demand. Due to the information spillover caused by transparency, the firm is able to commit to reducing \(\bar{w} \), thus restricting the extensive margin of labor (the proportion of workers it hires) while increasing the intensive margin (profit per worker hired). For clarification, consider full privacy (\(\Lambda = 0 \)) and full transparency (\(\Lambda = 1 \)). In the full privacy case, there are no information spillovers. Therefore, in the unique equilibrium the firm sets \(\bar{w} = v \), hiring all workers who offer no more than its value for labor. In the full transparency case, there are perfect information spillovers, and every worker learns the wages of others within the firm at the instant they are hired, before their initial negotiations. Therefore, every employed worker will receive exactly \(\bar{w} \) for each period of her employment. This is equivalent to the firm posting a profit-maximizing wage \(\bar{w} \) given a supply curve of labor (the distribution of outside options), which is the exact problem that a traditional monopsonist faces. If the firm instead sets \(\bar{w} = v \) as in the full privacy case, it would earn zero profits.

III. Main results - Effects of transparency on equilibrium

We analyze the equilibrium effects of increasing transparency along three dimensions: Does it reduce income inequality? Does it increase the employment rate? How does it affect the profit split?
III.A. Income Inequality

In our theoretical analysis of wage equalization we compare the lifetime earnings of workers i and j who are hired in equilibrium under both of two transparency levels, $\Lambda' < \Lambda''$, so we do not confound employment effects of increasing transparency. For any two workers i and j with $\theta_i > \theta_j$ who are hired under both Λ' and Λ'', there are two effects. First, as shown in Proposition 3, the supply effect incentivizes workers to reduce initial wage offers. We find that in equilibrium, since j has a lower outside option than i, j reduces her initial offer more than i. Figure I shows that the relative impact of transparency on w_i^* is smaller the larger θ_i is. Second, higher transparency decreases the expected time it takes until both workers renegotiate to \bar{w}, reducing dispersion of their lifetime earnings as $\bar{w} - w_j^* > \bar{w} - w_i^*$. The first effect increases the initial wage gap between i and j, however, we show that the latter effect dominates in the long run, leading to more compressed expected lifetime earnings. We document these two effects by plotting the expected difference in wages between workers i and j over time and for different levels of transparency in Figure II.

Theorem 1. Let $\theta_i > \theta_j$, $1 > \Lambda'' > \Lambda'$, and suppose workers i and j are both hired in equilibrium under Λ' and Λ''.

1. The difference in initial offers $w_i^* - w_j^*$ is higher under Λ'' than Λ', and
2. Let $T(\Lambda, v, \theta_k)$ be the equilibrium expected discounted lifetime earnings of a worker k with outside option θ_k under transparency level Λ and firm value v conditional on k being employed at the firm. Then $T(\Lambda', v, \theta_i) - T(\Lambda'', v, \theta_i) < T(\Lambda', v, \theta_j) - T(\Lambda'', v, \theta_j)$ and $T(\Lambda'', v, \theta_i) - T(\Lambda'', v, \theta_j) \to 0$ as $\Lambda'' \to 1$.

Note that the first point in the above theorem does not apply to full transparency. Under full transparency, there is a discontinuity because workers make their initial wage offers

13The restriction that workers be hired under both transparency levels is necessary as we show in Theorem 2; increasing transparency can increase employment, meaning that a previously unemployed, high outside option worker may find employment only when transparency is increased. To make this point concrete, take some small $\epsilon > 0$ and consider increasing transparency from Λ' to $\Lambda' + \epsilon$, such that more workers are employed in equilibrium under Λ'. In Appendix B we show that w_i^* and \bar{w} are continuous in Λ and so the expected lifetime earnings of any worker j hired under both transparency regimes is barely affected by an ϵ increase in transparency. However, a worker i who over-negotiates at level Λ' receives her outside option θ_i for her entire lifetime, while if she manages to find employment at the firm under Λ'' her average lifetime earnings will be greater than and bounded away from θ_i (as she always asks for a premium $w_i^* - \theta_i > 0$). But note that $\theta_i > \theta_j$, so the lifetime earnings of i and j are not compressed by increased transparency.
after seeing the wage offers of their coworkers, therefore \(w_i^* - w_j^* = 0 \) and \(T(\Lambda'', v, \theta_i) - T(\Lambda'', v, \theta_j) = 0 \) when \(\Lambda'' = 1 \), so there is never wage dispersion among employed workers.

Wage equality may be a reasonable notion of fairness when \(\theta_i \) represents a worker’s outside option. However, compression of expected surplus, that is, the difference between wage and \(\theta_i \), is another notion of fairness which may be particularly relevant to consider in cases when \(\theta_i \) represents the flow cost a worker bears for completing the job.\(^{14}\)

Does transparency lead to compression of expected surplus across workers? Simply put, the wage compression results in Theorem 1 are reversed when we consider surplus compression as low \(\theta_i \) workers are those who enjoy the largest surplus when employed.

Corollary 1. Let \(\theta_i > \theta_j \), \(1 > \Lambda'' > \Lambda' \), and suppose workers \(i \) and \(j \) are both hired in equilibrium under \(\Lambda' \) and \(\Lambda'' \).

1. The difference in initial surplus \((w_j^* - \theta_j) - (w_i^* - \theta_i) \) is smaller under \(\Lambda'' \) than \(\Lambda' \) and
2. Let \(S(\Lambda, v, \theta_k) \) be the equilibrium expected discounted lifetime surplus of a worker \(k \) with outside option \(\theta_k \) under transparency level \(\Lambda \) and firm value \(v \) conditional on \(k \) being employed at the firm. Then \(S(\Lambda'', v, \theta_j) - S(\Lambda'', v, \theta_i) > S(\Lambda', v, \theta_j) - S(\Lambda', v, \theta_i) \), and \(S(\Lambda'', v, \theta_j) - S(\Lambda'', v, \theta_i) \to \frac{\theta_i - \theta_j}{\rho + \delta} \) as \(\Lambda'' \to 1 \).

In sum, while transparency decreases differences in expected lifetime incomes across workers, it simultaneously increases differences in expected lifetime employment surplus, leading to an overall ambiguous effect on competing concepts of fairness.

III.B. Employment Rate

Again consider an increase in transparency from \(\Lambda' \) to \(\Lambda'' \). In an abuse of notation, let \(\bar{w}_\Lambda \) denote the maximum wage the firm pays and \(w_{i,\Lambda}^* \) the initial offer of worker \(i \) for transparency level \(\Lambda \). The demand effect lowers employment as \(\bar{w}_{\Lambda''} \leq \bar{w}_{\Lambda'} \) means that there are fewer workers with \(\theta_i \leq \bar{w}_{\Lambda''} \) who are eligible for employment. The supply effect increases employment as \(w_{i,\Lambda''}^* \leq w_{i,\Lambda'}^* \) for all \(i \) so fewer workers over-negotiate by initially offering \(w_{i,\Lambda''}^* > \bar{w}_{\Lambda'} \). As such, increasing \(\Lambda \) does not monotonically affect the employment level.

Theorem 2. The expected proportion of workers employed in equilibrium is concave in \(\Lambda \) and maximized at

\[
\Lambda^* = \frac{1 - \mathbb{E}(\theta)}{1 + \mathbb{E}(v) - \mathbb{E}(\theta)} \tag{6}
\]

\(^{14}\)We show in Section VI that the equilibrium outcome in a game in which all workers have an outside option equal to zero and \(\theta_i \) represents a (flow) cost to being employed is identical to that of the game presented above.
and the ex-post employment maximizing level of \(\Lambda \) is weakly decreasing in \(v \).\(^{15}\)

We see several important effects of transparency on employment. First, an interior level of transparency \(\Lambda \in (0, 1) \) maximizes employment. In fact, due to the concavity of the employment in \(\Lambda \) either full privacy or full transparency is employment minimizing.

Second, \(\Lambda^\ast \) is decreasing in both \(E(v) \) and \(E(\theta) \). Indeed, as \(E(v) \) converges to 0 full transparency becomes close to employment maximizing, and as \(E(\theta) \) converges to 1 full privacy becomes close to employment maximizing. For intuition, we return to Proposition 3. As \(E(v) \) decreases, the firm’s markdown \(v - \bar{w} \) is likely to be small regardless of \(\Lambda \). Therefore, increasing transparency does not greatly reduce the number of workers with \(\theta_i < \bar{w} \). But by increasing transparency, workers will shade down their initial offers \(w^*_i \), reducing the number of workers who over-negotiate. Similarly, as \(E(\theta) \) increases, most workers offer small premia \((w^*_i - \theta_i) \) regardless of \(\Lambda \). Increasing transparency has little effect on these premia, but instead discourages the firm from setting a large markdown.

Third, both the ex-ante and ex-post optimal levels of transparency are in some sense decreasing in \(v \). We have already discussed how \(\Lambda^\ast \) is strictly decreasing in \(E(v) \), and increasing transparency is more beneficial for the employment level when \(v \) is small. Given that workers’ initial offers are not affected by the realization of \(v \) (they do not observe it), high transparency causes firms to reduce \(\bar{w} \) more significantly when \(v \) is high, leading to relatively less employment. Additionally, this comparative static on the ex-post employment maximizing level of transparency also holds for the ex-post social surplus maximizing level of transparency. In fact, the ex-post maximizer of employment also maximizes ex-post social surplus; because each employed worker earns a wage weakly greater than her outside option, in equilibrium each employed worker increases social surplus by \(v - \theta_i > 0 \), implying that social surplus is proportional to employment level. Therefore, increasing transparency is also more beneficial from a social surplus perspective when the firm has a small realization of \(v \).

III.C. Profit Split

Does increasing pay transparency benefit the firm or the workers? In light of Theorem 2 we may suspect that the employment gains from increasing transparency could make both parties better off. Nevertheless, perhaps counter intuitively, we find that increasing pay transparency increases the expected profit of the firm while decreasing the expected welfare of workers.

Theorem 3. The ex-ante expected equilibrium profit of the firm is strictly increasing in \(\Lambda \) and the ex-ante expected equilibrium profit of workers is strictly decreasing in \(\Lambda \).

\(^{15}\)The expected match surplus is \(E(v) - E(\theta) \), so \(\Lambda^\ast = \frac{1 - \text{expected outside option}}{1 + \text{expected match surplus}} \).
Although increasing Λ increases the rate at which workers receive wage \tilde{w}, it lowers both w^*_i and \bar{w} in equilibrium. The overall effect is to shift de facto bargaining power to the firm, benefiting the firm at the expense of workers. For clear intuition, consider the extreme cases of full privacy and full transparency. In the full privacy equilibrium, each worker makes a once-and-for-all offer to the firm. Under full transparency, the firm selects a maximum wage that all employed workers immediately receive, essentially allowing it to make a once-and-for-all offer to workers. The main result of Myerson (1981) implies that each party prefers to be the one making the once-and-for-all offer to the other.

III.D. Endogenous selection of transparency

Until now, we have been studying the ex-ante (before the firm draws v) effects of increasing transparency ex-ante on wage equalization, employment, and profit share. These results give insights into the effects of governmental policy instituting pay transparency measures. Although there has been recent state and federal action in the United States to increase pay transparency, many industries remain unregulated. Firms may be able to select transparency levels, and workers may be able to choose to seek out or ignore wage information.

In Example 1 in the Appendix we show that full transparency is not the profit maximizing (exogenous) level of transparency for every draw of v. Indeed, the profit maximizing level of Λ is not even monotonic in v. Nevertheless, when the firm is able to endogenously select transparency, we find that the unique equilibrium that does not involve employed workers renegotiating in the absence of learning the wages of their coworkers is one in which the firm selects full transparency regardless of its draw of v. As wage negotiations are relatively rare,\(^{16}\) we believe this to be a reasonable class of equilibria to consider. Our findings suggest that in the absence of governmental regulation, observed levels of transparency may be very different from employment maximizing levels.

Formally, we allow the firm to select transparency to maximize its profits immediately after seeing the draw of v and before selecting \bar{w}. We do not allow workers to directly observe the level of transparency selected by the firm,\(^ {17}\) however, the results of this section are not greatly changed if we instead assume workers can observe the selected level of transparency.

Theorem 4. Suppose the firm can privately select Λ as a function of v. Within the class of equilibria in which no worker renegotiates in the absence of coworker wage information on equilibrium path, there is an essentially unique equilibrium (linear or otherwise) outcome. In it, the firm selects $\Lambda = 1$ for all v.

\(^{16}\)Hall and Krueger (2012) find that about 70% of workers have not negotiated raises at their current jobs.

\(^{17}\)It is likely to be viewed as cheap talk for an employer to say, “our firm has a high degree of transparency, so don’t worry, you’re likely to learn the wages of your coworkers very soon” at a job interview.
Because workers do not directly observe the selected Λ, each worker’s belief of the value of Λ decreases continuously in the length of time since being hired without learning the wages of coworkers. Because of this, workers will renegotiate their wages in the absence of learning the wages of their coworkers. Therefore, we have ruled out any strategy in which the firm selects any $\Lambda \in (0, 1)$. Can it be the firm only selects from $\Lambda \in \{0, 1\}$? We show that the firm cannot set $\Lambda = 0$ in equilibrium due to unraveling (Milgrom, 1981). To see this, let v_L be the infemum value for which the firm selects $\Lambda = 0$. Then upon arriving at the firm, all workers will immediately deduce that the firm has chosen $\Lambda = 0$ since they do not initially observe the wage profile of the firm. Workers will infer that the firm’s value is at least v_L, and so every worker will bid at least v_L. As a result, when the value of the firm is (close to) v_L it will make (approximately) 0 profits unless it deviates to selecting $\Lambda = 1$. But if this firm type deviates, there is a new “v_L.” Inductively there cannot be an equilibrium in which there is a positive measure of firm types playing $\Lambda = 0$. The equilibrium in which the firm selects $\Lambda = 1$ for all v can be supported with the off-path beliefs that a deviating firm has value $v = 1$ with probability 1. As $\bar{w} = v$ when $\Lambda = 0$, a deviating firm will make zero profits.

This result is particularly applicable to online labor markets in which employers can only select from a coarse grid of transparency levels. On TaskRabbit, for example, employers can either accept private bids or post a transparent wage. In settings that do not allow workers to otherwise gain wage information, accepting private bids is equivalent to setting $\Lambda = 0$ and posting a wage is akin to choosing $\Lambda = 1$. Here, the unraveling result holds without any caveats.

Corollary 2. When the firm can select $\Lambda \in \{0, 1\}$ as a function of v there is an essentially unique equilibrium outcome. In equilibrium, the firm selects $\Lambda = 1$ for all $v > 0$.

We have not formally modeled the choice of workers to “bury their heads in the sand” and ignore information about their coworker’s wages. Nevertheless, a richer model that allows each worker i to specify Λ_i such that the effective transparency to worker i is $\min\{\Lambda_i, \Lambda\}$ will result in each worker i setting $\Lambda_i = 1$. This is easy to see as no single worker will affect the equilibrium payoff, and therefore decisions, of the firm. Fixing \bar{w}, higher transparency is better for every worker, so every worker has an incentive to seek out the wages of their coworker to the highest possible degree.

IV. Study I: Evidence from TaskRabbit

IV.A. Platform

We use administrative dataset of temporary workers and employers, matched on an online labor platform, TaskRabbit, between June of 2010 and May of 2014 to test our theoretical
predictions. TaskRabbit differentiates itself from other online labor platforms by specializing in local jobs, often taking place at the household of the employer, which account for 89% of jobs completed. The platform is active in 19 metropolitan areas across the U.S. during this period.

Our research concentrates on jobs that are posted as one-time tasks. Most jobs on TaskRabbit do not require expertise, and as such, labor is relatively homogeneous and low-skill. Employers can observe workers’ profiles, which include the number of prior jobs completed on the platform, a rating out of five stars, and a short bio.

Employers post a description of the task, details about the exact location, number of workers needed, frequency of task, and a deadline for completion. Workers search through these postings and submit bids for tasks they are interested in completing. Alternatively, the employer can choose to post a TIOLI price, and the first worker to accept is matched.

IV.B. Bargaining Environment

Employers can elect to increase wages through the platform once the job is completed. As jobs frequently involve face-to-face contact between employers and employees, this allows for the possibility of on-the-job wage bargaining.18

Once the job begins, several frictions make canceling costly for both parties. TaskRabbit is a spot market designed for urgent tasks; conditional on completion, 97% of tasks are finished within three days of posting. Additionally, the rate at which workers bid on a task quickly decreases in the time since it is first posted; the median job receives 1 offer in the first hour, and 1 every 4 hours over the first day. Taken altogether, finding a replacement worker after the job begins would likely result in costly delays.

Similarly, workers cannot costlessly transition to another job. Because these are in-person tasks, we observe high travel costs relative to the final transaction price.19 At the time that a worker is assigned a job, the worker and employer enter a contract that can be cancelled by contacting the platform and providing a reason. TaskRabbit has a three strike rule. After three cancellations, a user will not be permitted to use the site again. During the window between when the match is made and the job is complete, money is held in escrow and will be released to workers by default when a pre-determined close date passes.

Employers have the opportunity to leave a public rating out of five stars for a worker she has hired. There is no reputation system for employers. With very few exceptions, employers

18The platform reserves the right to revoke user privileges should any activity suggest circumventing the online contract. However, we do not rule out the possibility that working relationships continue off the platform. For robustness, we replicate results to exclude and include employers that never return to the site after their initial jobs are completed.

19This can be done, for example, by calculating the distance between a worker’s home address and work location, and comparing average transportation costs over this distance to the wage a job pays.
do not leave negative reviews, but they frequently decline to rate workers. While this is not by design, TaskRabbit and many other platforms that facilitate in-person interactions experience this phenomenon. Our measure of individual productivity includes these “missing” reviews, which are not directly observed by participants on the platform, by looking the Effective Percent Positive (EPP), the proportion of positive reviews received of all completed jobs.20

IV.C. Measuring Transparency

We measure pay transparency on TaskRabbit several ways. Our first measure is whether the job post itself includes a posted price publicly visible to all workers. The posted price can either be text embedded in a job description or a TIOLI price associated with the job posting format selected. We classify these as full transparency.

Our second measure is based on the physical proximity of workers in multi-worker jobs and the length of time they overlap in the same location, with longer co-location leading to higher transparency. We distinguish settings inherently suited for either co-located workers and physically separated workers, for example, a retail branch might outsource the boxing of holiday gifts at the store (co-located workers), or outsource the distribution of catalogues in different neighborhoods (separated workers). We use the street address to classify proximity and we supplement it with survey evidence; we hire approximately five thousand online workers to read through the detailed job descriptions and report key attributes, including how conducive the setting is to co-worker communication about pay (length of time together, physical proximity, privacy). The survey evidence predicts that workers learn about each other’s bids 47% of the time when co-located, and only 7% of the time if the workers are physically separated. In Table I.A we report characteristics of workers, employers and tasks on TaskRabbit, separated by this transparency classification.

IV.D. Verifying Bargaining Assumptions

The premise of our model has two clear empirical implications for the outcome of a re-bargaining process in multi-worker, co-located tasks in which workers place initial bids.

20The literature on user generated content has identified a number biases and manipulation techniques that we can address using data about performance that the platform collects but is not visible to the users. Nosko and Tadelis (2015) show the “sound of silence,” or missing reviews, on Ebay is skewed toward negative feedback. We show the share of missing reviews on TaskRabbit predicts whether an employer returns to the platform, TaskRabbit’s central measure of employer satisfaction, and the worker star-rating conditional on receiving a rating (Table A1 Col. 1 and Col. 2 respectively). Another important feature of EPP is that it is correlated with ex-post pay, but not the ex-ante bid accepted (Table A2), suggesting that we are really detecting the performance that the employer observes on-the-job.
We use TaskRabbit data to test these two stylized facts, lending credence to our modeling decisions, which we show in Table III:

SF1: Workers are no more or less likely to receive a higher wage based on how much lower their bid is from the highest accepted bid.

SF2: Workers who receive different wages than their initial bids receive a wage equal to the highest accepted bid.

Conditional on renegotiating a higher wage than the initial bid, similar workers negotiate pay nearly equal to that of the highest accepted bidder (Col.4-6, SF2). At the same time, the difference in initial wages adds no additional predictive power as to whether or not a worker receives any raise at all (Col.1-3, SF1).

We argue that renegotiation is the cause of this wage compression. In Appendix A we discuss the shortcomings of alternative explanations for the compression patterns we observe, such as productivity spillovers or employer preferences for equity. In Section VI we analyze an alternative model in which worker preferences for equality drives wage compression. In Section V we compare results from our analysis of TaskRabbit side-by-side the with results from our experiment in which we exogenously vary transparency and observe negotiations directly. The results are strikingly similar.

IV.E. Quantifying Wage Compression

Theorem 1 states that increased transparency leads to compression in wages of employed workers.

Among co-located workers, 19% receive pay that is higher than their bids, as opposed to 4% on average when workers are separated. The Gini coefficient of final pay is, on average, two-thirds the Gini coefficient of selected bids when workers are co-located, and cannot be statistically differentiated from 0 when separated. The average Gini coefficient of final pay is more than 0.05 higher when workers are separated (the population average is 0.1, Table IV).

In a regression at the level of an individual worker, we demonstrate a co-worker’s bid impacts own final pay. To interpret co-workers’ bid as having a causal effect on own final pay when workers are co-located, bidding cannot be strategic nor can employer’s selection of workers as a function of co-location. Prima facie evidence supports these assumptions. Multi-worker tasks comprise fewer than 5% of posted jobs and workers are often unaware that more than one vacancy exists even when it does. Additionally, employers rarely have more offers that the number of workers necessary to complete a multi-worker job. For a more detailed empirical analysis of non-strategic bidding, see Appendix Section A.1.
We run the specification in Equation 7. Each accepted bid placed by worker i is one observation. The subscript s refers to the job and j to the employer. The dependent variable is the difference between ex-post payment and ex-ante bid, Δy_{ijs}, expressed as a percentage raise above i’s initial bid. The difference between i’s initial bid and that of the highest selected bidder is also expressed as the percentage above i’s initial bid, T_{ijs}. We interact difference between bids with an indicator for whether workers are separated on the job.

$$\Delta y_{ijs} = \alpha_0 + \alpha_j + \beta X_i + \phi X_s + \epsilon_{ijs} + \gamma \theta_1 T_{ijs} + \gamma \theta_2 T_{ijt} I_{Separate}$$ (7)

These results can be seen in Table A8. When workers are co-located, an additional 10% gap between initial bids and the high bidder will result in a 4% increase in ex-post pay on average. The effect of the difference between co-worker bids on the final pay when workers are separated physically cannot be statistically distinguished from 0. Col. 4 demonstrates this finding is robust within employer.

IV.F. Employment Rate

TaskRabbit administrative data includes those job posts that expire being matched with a worker, offering us a measure of unmet labor demand. We refer to the employment rate, in the context of TaskRabbit, as the proportion of posted positions which are ever filled. Theorem 2 finds that transparency raises employment by more when the value of labor to the employer is low. To test this finding, we need to measure both employment and employers’ value of labor. We do not directly observe the maximum an employer is willing to pay to fill the job vacancy, but we do observe self-reported annual earnings from household employers. We use annual earnings as a proxy for willingness to pay. One reason to favor this measure is that, from a survey of employers conducted by TaskRabbit, the most common alternative to using TaskRabbit to complete a task is to do it oneself. Using money as measure of the opportunity cost of time, higher income employers are more likely to have higher time costs (i.e. leisure is a normal good).

21We include employer fixed effects in our analysis, which also includes characteristics of the task itself.
22We are confident that there is negligible measurement error in the bids, and are therefore comfortable normalizing both the dependent and independent variables by the initial bid.
23Cullen and Farronato (2016) find TaskRabbit to be a slack labor market with highly elastic labor supply, supporting the notion that unfilled tasks reduce total work completed by workers and their wages on platform.
24TaskRabbit also hires third party companies to report socioeconomic characteristics of employers using a combination of address, job title, and other public records.
We find that below-median earners (under $150,000 annual income) who choose transparent posted prices to advertise their job enjoy a higher match rate (relative to when they solicit private bids) and that this boost is greater for low earners than for above-median income employers (Table V). Below-median income employers also select a transparent posted price more often than high earners (5% more often, Table A7). Overall employment is increased by 12% under transparent posted prices. We reproduce this analysis restricting the sample to the first three jobs posted by each employer to minimize the effects of learning and strategic selection, and find similar results.

IV.G. Profits

Theorem 3 predicts higher levels of transparency are associated with higher expected employer profits. We note in Table VI that both bids and final pay are approximately 10% lower when the employer posts a wage in the job description, a result that is robust across specifications with worker fixed effects and job characteristic controls. Moreover, there is an insignificant difference in the probability of hiring a worker when the employer posts a wage in the job description. Taken together, this likely translates into higher profits. We find similar differences in total wages if we compare posted price jobs (high transparency) to private auctions (low transparency), and if we compare co-located, multi-worker jobs (high transparency) to separated, multi-worker jobs (low transparency).

IV.H. Endogenous Choice of Transparency

When employers select between full transparency and full privacy, Corollary 2 suggests that employers always choose full transparency in equilibrium, due to unraveling. The analogue in TaskRabbit is the choice of the employer to advertise a job with a transparent posted price or to solicit private bids without mentioning price in the job post.

We observe the predicted unraveling in TaskRabbit. TaskRabbit staggered entry into different cities, meaning that at the end of our data sample, there is large variation in the length of time TaskRabbit has been active in different cities. In line with this theoretical prediction, Figure III shows the share of posted price jobs in each TaskRabbit market in June, 2014. Older markets are generally associated with a higher proportion of posted price jobs. Analyzing a balanced panel of city-months, Figure IV shows that, all else equal, the proportion of posted price jobs rises by 1% per month.

25 Einav et al. (2018) study a shift in eBay sales away from an auction format and toward posted prices. We discuss their model, its relation to our setting, and the differences between TaskRabbit and eBay in Appendix A.2.

26 In June, 2014 TaskRabbit removed the bid acceptance procedure from all markets.

27 Our simple theory predicts immediate unraveling to full transparency, but observed unraveling in labor
V. Study II: Evidence from Field Experiment

We conduct a field experiment to further test our findings in a controlled environment. We hire 347 managers and 1047 workers from an online labor market who are tasked with negotiating wages for a real-effort task in which we exogenously vary transparency. The experiment relies on free-form bargaining between workers and managers. We view this as a strength of our experiment; by allowing for more natural bargaining protocols than the TaskRabbit environment, we take another step toward generalizing our findings.

We directly measure worker productivity, outside options, and employer profits. This allows us to explore additional notions of fairness, such as compression in worker surplus in addition to compression in earnings. In Section VI we use this additional data to test the relative importance of social concerns surrounding pay transparency, and run a horse race between such a model and our re-bargaining model.

V.A. Procedure

Participants are recruited from Upwork and Amazon’s Mechanical Turk between October, 2016 and May, 2017. Participants are assigned to either the role of worker or manager and informed that their participation is voluntary and part of an academic experiment. All participants are given the following instructions: managers and workers are tasked with negotiating a per-page rate for completing text-to-text transcription of US Census tables from the 1940s. If a worker and manager agree on a wage and the worker completes a page above a stated accuracy threshold, the worker receives the agreed upon wage. Workers are each able to complete up to 5 pages of transcription. Each manager is assigned to an average of 3 workers and privately given a per-worker-page budget, either $5 or $9. As in our model and TaskRabbit, managers have incentives to pay low wages; managers are paid this budget, minus payments made to the worker, for every completed page above the accuracy threshold. Therefore, as in our model, there is no direct impact of worker turnout on marginal manager earnings.

Before interacting, workers are shown a sample transcription page. They are asked to place a per-page bid for completing a similar transcription, and this bid is shared with the manager. We also collect data about the minimum price a worker would accept to transcribe a page, and make it clear to workers that this information will not be shared with managers. Similarly to Becker et al. (1964), we make truth-telling a dominant strategy for workers; they are asked to make several selections between receiving $X for completing markets typically takes time, as discussed in Roth and Xing (1994). This dynamic is consistent with a richer, bounded rationality formulation of our model, a la Kandori et al. (1993), in which employers select to post a price or accept bids based on which scheme would have maximized their expected profits in the previous period.
one transcription page, up to a maximum of 5 pages or $9 for doing nothing. We vary X
and randomly select one choice for 1 in 10 workers and give the worker their reward (either
$9 or the opportunity to complete 5 additional pages at $X per page) after their initial
assignment has been completed. We also survey other characteristics including the expected
time it takes to complete each page, daily household income, management/transcription
experience, gender, location, and age.

Managers are shown worker bids, then meet with workers to bargain for wages in anony-

mous online chatrooms. No other communication occurs between participants. We place no
restrictions on the way in which participants bargain, only that they indicate in the chat-
room a final agreed upon wage. Participants are told that we can monitor chatrooms and
that agreement is required to dispense payment. After agreeing to a wage, each worker has
48 hours to complete up to 5 pages of transcription.

V.B. Treatments

The experiment follows a $2 \times 2 \times 2$ design. One treatment is the public visibility of wage
negotiations. Managers either negotiate wages with each worker in a separate, private chat
room (“privacy” treatment), or the manager negotiates over a common chat room (“trans-
parency” treatment) with all workers. The second condition varies the budget assigned to
managers, either $5 per page or $9 per page. The third treatment either requires managers
to accept all bids less than or equal to their budget, or allows them to actively bargain with
workers.

V.C. Administrative Details

We present results from two procedures that differ only in the degree of automation.
One version relies on us, the experimenters, to invite workers to chat rooms and collect
transcriptions via email following the intake survey, and another is completely automated
in this dimension, as all interaction occurs through a single web interface programmed in
oTree (Chen et al., 2016). oTree became available after the initial rounds of our experiment.
More than 3/4 of our participants (800 of 1047 workers and 253 of 347 managers) interacted
through the automated oTree system, and results are comparable across the two interfaces.
Table II shows that, along ex-ante observable characteristics, the workers and managers
randomly assigned to different treatments are comparable.

Transcription accuracy is calculated using the Levenshtein distance measure (Leven-
shtein, 1966), defined as the minimum number of single-character edits (substitutions, dele-
tions, or insertions) necessary to change one string into another. Each submitted page with
a Levenshtein distance from the original document of fewer than 5% of the total number of
V.D. Analysis and Main Findings

Workers often used the wages of others to bargain for wages in the transparency treatment. Below, we provide a portion of one wage negotiation as an example.

Manager: You agreed to $1 per page?

Worker: I really don’t remember, it sounds good but I suppose you would give the same to everyone? I see you gave 5$ to [other worker].

:\

Manager: Okay, $5 per page!

We corroborate much of the evidence supporting our theoretical results found in TaskRabbit data, as well as testing certain predictions that were unobservable in TaskRabbit. We detail these results below:

Wage and Surplus Compression:

Pay is significantly compressed in the transparency treatment compared to the privacy treatment, including and excluding workers who do not complete the task in our analysis. In nearly every instance where the worker reached an agreement with the employer, the worker ultimately receives pay equal to that of the highest paid worker (Table IV), corroborating theoretical predictions SF1 and SF2. Of the managers allowed to negotiate wages with workers, 88 of 104 in the transparent pay treatment pay common wages to all workers, compared to only 21 of 82 managers in the private pay treatment.

We consider disparities in worker surplus, defined as the final payout received less the elicited reservation value, as an additional measure of fairness. On average, the Gini measure of dispersion for worker surplus is 0.115 in the privacy treatment, and more than doubles in the transparency treatment (Table IV). Is this evidence of greater inequality in welfare?

Answering this question depends on what worker’s outside options represent. If the outside option reflects external wages, then compressing pay may offset disparities in outside opportunities. If the outside option reflects cost of effort, rising dispersion in worker surplus reflects a shift of surplus towards those who (are fortunate to) have low effort costs and away from those who have high effort costs.

We find evidence that outside options reflect cost of effort, in part, by eliciting the time it takes to complete a page of transcription. When we convert the piece-rate contracts into an hourly wage, we no longer find strong evidence of wage compression (Table IV).
Employment Rate:

We define employment as the match rate, the proportion of workers who agree on a wage with their manager. Recall Theorem 2 states that the positive effect of transparency on employment is higher when the value of labor is low. This experiment provides a direct test of the theorem. We show in Table V that when the manager’s budget is $5 per page, employment rises by more than 10% when negotiations are held in the transparent as opposed to the private forum. On the other hand, when the manager’s budget is $9, employment is 10% lower when negotiations are transparent than when they are private. This difference is statistically significant, and provides evidence that higher transparency is more effective at improving employment when the employer value (manager budget) is low.

Profits:

Our theory predicts that, irrespective of the employer’s value of labor, profits will be higher in expectation under full transparency than under full privacy. In Table VI we display empirical evidence consistent with this prediction. Manager profits are over 60% higher in the transparency group than the private group. In private forums, workers bargain more aggressively and negotiations more often result in disagreement and no transaction.

VI. Alternative Model

We investigate an alternative channel, a social preference for fairness, that has been suggested in the literature as a possible explanation for compressed wages in pay-transparent environments. Several papers (Breza et al., 2017; Card et al., 2012; Mas, 2016a; Perez-Truglia, 2016) document a morale effect—a worker is less likely to exert high effort upon learning she is underpaid relative to her peers. This reasoning for this effect is that workers face additional costs to effort upon learning they are underpaid (Akerlof and Yellen, 1990). A proactive employer may augment the wages of workers who learn they are underpaid in order to avoid low effort provision. But is this alternative model consistent with our empirical results?

To test this competing mechanism, we build a model of bargaining under transparency that endogenizes worker effort. As before, suppose that workers make initial offers \(w_i^* \) and the wage profile of the firm arrives at rate \(\lambda \) independently to each worker. Additionally, let each worker \(i \) select \(e_{i,t} \in [0, 1] \) which is the probability of successfully completing her time \(t \)

28 Alternatively, the modeling in this section can be interpreted as a social, “fairness” cost that an employer pays for having known, unequal wages.

29 This, of course, hinges on the ability of the firm to monitor a worker’s output or knowledge of the wages of others within the firm.
duties and getting paid her time t wage $w_{i,t}$. We re-imagine θ_i as a cost of effort. All workers have an outside option normalized to 0 and have to pay a linear effort flow cost $\theta_i \cdot e_{i,t}$. We focus our attention on myopic equilibria in which $e_{i,t}$ is chosen to maximize time t profit for each worker.\footnote{This is to rule out equilibria that stem from seemingly non-credible threats, such as workers electing to exert low effort if the firm does not raise their wage at an arbitrary time.}

First, we show this alternative model leads to a similar equilibrium as our base model.

Proposition 4. There is a unique linear equilibrium of the endogenous worker effort game in which all workers set $e_{i,t} = 1$ for all periods of employment and all other actions are the same on equilibrium path by all agents as in the equilibrium of the original game.

Since the bargaining outcome is unchanged in the presence of endogenous worker effort, all of the other results of the paper carry through to this setting. We now remove workers’ ability to renegotiate in order to study employer decisions to raise wages to avoid effort reduction, that is, workers make a wage offer w_i^* when they are initially hired, and thereafter can only make effort choices. Instead, at each time t the firm can observe whether a worker has received wage information and can elect to unilaterally increase her wage for all times $t' \geq t$. We refer to this as the *proactive employer model*. To give the firm a reason to increase wages, we include a morale cost to a worker for learning she is underpaid, modeled in the same way as in Breza et al. (2017): workers face a higher cost to effort upon learning they are paid less than any peer, and this cost is non-decreasing in the effort the worker provides and the difference between her wages and that of her highest paid coworker. Formally, let the morale cost $m(e, d) \in (0, 1)$ where $d = \bar{w} - w_{i,t}$. We assume $m(\cdot, \cdot)$ is non-decreasing in both arguments and that $m(0, \cdot) = m(\cdot, 0) = 0$. Suppressing time and worker identity notation, before learning about the wages of her peers a worker’s payoff is $w \cdot e - \theta \cdot e$. As before, $w \geq \theta$ and due to the linearity of costs, a worker will put in full effort in equilibrium. Upon seeing the wages of her co-workers and learning \bar{w}, the worker’s flow payoff becomes $w \cdot e - \theta \cdot e - m(e, d)$. Depending on $m(e, d)$, the worker may optimally shirk.\footnote{The results of this section would be similar if we instead assumed the firm had the bargaining power and was the party making TIOLI offers to workers after observing their outside options. In equilibrium, the firm would select a subset of workers to employ and pay each worker her outside option. Once a worker learns the wages of her peers, the firm would (possibly) increase her wage to offset morale costs.} It is easy to see that the firm will increase the wage of a worker i at time t only if i learns the wages of her co-workers at time t. We now formally state conditions on the morale function for the proactive employer model to lead to the same equilibrium outcome as that of our original model, and in particular, fit our key empirical finding of full wage equalization following a worker learning the pay of her coworkers.
Proposition 5. There is a unique linear equilibrium of the proactive employer model for every Λ in which the firm sets $w_{i,t} = \bar{w}$ for any worker i who learns \bar{w} at any time t and all other actions are the same on equilibrium path by all agents as in the equilibrium of the original game if and only if $w \cdot e - \theta \cdot e - m(e,d) \leq 0$ for every $e \in (0,1]$ and every $d \in (0,1]$.

Only very extreme morale cost functions give equivalent predictions as the bargaining model; unless every worker would optimally choose to quit her job (put in 0 effort) upon receiving any wage less than \bar{w}, the firm will not always equalize the wages of all workers upon them learning \bar{w}. Intuitively, when transparency is low, firms make close to zero profit from their highest paid worker ($v - \bar{w} \approx 0$) so even if a worker drastically reduces her effort, but does not quit upon learning she is underpaid, a proactive firm would still prefer not to increase her wage all the way to \bar{w}.

We wish to be clear about the role of quantifiers in Proposition 5. It is certainly possible for some firm types to fully equalize the pay of some workers for a fixed Λ. If Λ is relatively high, then $v - \bar{w}$ is far from 0 for large values of v, meaning that when the firm has large v, it will fully equalize worker wages if workers’ effort provision (defined by function m) is sufficiently small, but still positive, without equalization. Nevertheless, our empirical evidence, both from TaskRabbit and our field experiment, points to full wage equalization following the observation of others’ wages across job categories, different levels of transparency, and different values of v. Therefore, our interpretation of Proposition 5 is that we should not expect “smooth” morale cost functions to lead to full wage equalization.

In line with the literature, we do find evidence of a morale cost to effort when a worker learns she is underpaid; however, most workers complete their task. The transcription rate in our experiment drops by 18% in the treatment in which managers are unable to negotiate away pay differences and negotiations take place in a transparent, common chat.

32Fanning and Kloosterman (2017) produce experimental evidence that social concerns in dynamic bargaining may lead to a Coase Conjecture-like result of full wage equalization; that is, if with positive probability each worker refuses to work for anything less than full wage equalization due to morale concerns, all other worker types will mimic this behavior, and the firm will (almost) immediately offer wages to workers that are (almost) equal. This type of model would have nearly identical predictions as our base model. However, we note that we do not observe all workers rejecting all wage offers by managers which are bounded away from full equality in our experiment, as Fanning and Kloosterman (2017) predict.

33We find some evidence that transparency is unanticipated in certain job settings in TaskRabbit, which we discuss in Appendix A.1. If transparency is unanticipated it becomes even more implausible that morale is the cause for wage equalization; if workers and the firm place and accept initial offers thinking there is full privacy, then $\bar{w} = v$. But then for any actual level of transparency $\Lambda \in (0,1)$ full wage equalization would lead the firm to derive zero profits from every worker.

34Robert Duvall famously refused to take part in The Godfather Part III stating, “if they paid Pacino twice what they paid me, that’s fine, but not three or four times, which is what they did” (http://www.imdb.com/name/nm0000380/bio accessed 11/7/2016). Similarly, in our experimental treatment in which managers must accept worker bids as final wages, one low-bidding worker remarked, “yeah, I won’t be working for less than a third of what others are getting for the same amount of work” before ending his participation.
room compared to the case in which managers are allowed to negotiate in a transparent, common chat room.\footnote{As managers accepted all bids below the budget in this treatment, whereas managers often (optimally) used a common wage strictly less than their budget when they were allowed to negotiate, we believe this to be a lower bound on the effect of morale.} However, the task completion rate when managers were unable to negotiate with workers is still statistically different from 0 at the .01 level. Furthermore, the transcription rate falls the farther a worker’s bid is from the highest accepted bidder in this treatment, as we show in Figure V.\footnote{Card et al. (2012), Mas (2016a), and Breza et al. (2017) present similar findings.} Therefore, in light of Proposition 5, and SF1 and SF2, we believe that the mechanism equalizing wages in transparent pay environments we study is more in line with re-bargaining than a proactive employer optimally responding to morale costs of workers. We reiterate that we find evidence supporting the existence of a morale cost to learning that one is underpaid, but in the presence of renegotiation, this does not change our findings, as workers will bargain away wage differences and therefore face no lingering morale costs.\footnote{If we use the morale specification in this section and give the workers the ability to make TIOLI offers to the firm, then workers optimally request \bar{w} upon seeing learning wages as it improves their objective function without affecting their constraints regarding chosen effort. This means that on path, workers will renegotiate successfully to \bar{w} and never pay the morale cost or put in low effort.}

VII. GENDER DIFFERENCES AND THE GENDER PAY GAP

We allow for differences between workers along two dimensions, outside options and heterogeneities within the communication network. We extend our empirical and theoretical analysis to shed light on how transparency affects wage inequality when genders differ along these dimensions. We believe these to be important avenues of inquiry, as pay transparency is commonly cited as a way to close the gender wage gap, which stands at roughly 8\% after controlling for observables (Blau and Kahn, 2017; Goldin, 2014).

We elicit the outside option of workers in our experimental setting as discussed in Section V. We find that women have on average 9.7\% lower outside options than men, and we show that increasing pay transparency can close a pay gap caused by differences in outside options.

To see this theoretically, let there be two types of workers, m (male) and f (female), such that $qG_m(x) + (1-q)G_f(x) = G(x)$ for all $x \in [0,1]$, where $G_m(x)$ and $G_f(x)$ are both atomless distributions and $q \in [0,1]$ is the proportion of men in the market. The first, and simplest, result is an application of Theorem 1. Similarly to above, we denote the average equilibrium lifetime earnings of an employed worker of type $\ell \in \{m, f\}$ as $T(\Lambda, v, \theta, \ell)$.

Corollary 3. If $G_m(\cdot)$ first-order stochastically dominates $G_f(\cdot)$ then $\frac{E_{G_f}[T(\Lambda, v, \theta, f)]}{E_{G_m}[T(\Lambda, v, \theta, m)]}$ converges monotonically to 1 as Λ converges to 1 for all v.

31
In words, this result says that the average earnings of employed women is rising relative to the average earnings of employed men as transparency increases, and reaching full transparency completely equalizes earnings. The proof of this result follows from Theorem 1. When \(G_m(\cdot) \) first-order stochastically dominates \(G_f(\cdot) \), it is possible to pair up every \(f \) type worker with an \(m \) type worker with a higher outside option. Formally, let \(\mu : [0, 1] \to [0, 1] \) define for each \(f \) type worker \(i \) an \(m \) type worker \(j \) such that \(\theta_j \geq \theta_i \) and \(\mu(\theta_i) \neq \mu(\theta_i') \) for any \(i \neq i' \). We know by Theorem 1 that \(\frac{T(\Lambda, \nu, \theta_i)}{T(\Lambda, \nu, \theta_j)} \) converges monotonically to 1 in \(\Lambda \), which implies that the average income of each worker type also converges monotonically to 1 in \(\Lambda \).

However, if transparency spreads through word of mouth, workers’ differing propensities to speak about wages may affect the gender pay gap. Empirically, we find evidence that heterogeneities across men and women heavily mediate the impact of partial transparency (resulting from open communication between coworkers) in decreasing the gender pay gap. In TaskRabbit, men receive bonuses more often than women on average when workers are co-located, and not when they are separated (Table VII). This is in line with findings of our worker surveys, where men report a higher likelihood of learning about co-worker pay on the job (Figure VII).

We make simple adjustments to the model to capture differences in rates of wage communication across genders. Let \(\alpha_m > \alpha_f > 0 \) be the rates at which men and women “speak about wages,” respectively. Let the arrival rate of information for a worker of gender \(\ell \in \{m, f\} \) be \(\alpha_\ell \lambda \). Then

\[
\Lambda_\ell = \frac{\alpha_\ell \lambda}{\rho + \delta + \alpha_\ell \lambda} \quad \text{for } \ell \in \{m, f\} \text{ and } \lambda \in [0, \infty)
\]

(8)

This communication heterogeneity causes the de facto arrival rate of information of men to be greater than that of women, that is, \(\Lambda_m - \Lambda_f \geq 0 \) for all \(\lambda \). We plot \(\Lambda_m - \Lambda_f \) as a function of \(\lambda \) for arbitrary parameters in Figure VI. \(\Lambda_m - \Lambda_f \) is initially increasing but converges to 0.

Proposition 6. Let \(\lambda_c \) solve \(\alpha_m \alpha_f = \frac{(\rho + \delta + \alpha_m \lambda)^2}{(\rho + \delta + \alpha_f \lambda)^2} \). \(\Lambda_m - \Lambda_f \) is strictly increasing in \(\lambda \) for all \(\lambda < \lambda_c \) and strictly decreasing for all \(\lambda > \lambda_c \). As \(\lambda \to \infty \), \(\Lambda_m - \Lambda_f \to 0 \).

Compare the effects of moving from full privacy to some \(\lambda > 0 \). When \(\lambda \) is relatively low, information transmission between workers happens rarely through word of mouth. Because men are more likely to speak about wages, they disproportionally benefit from low levels of transparency compared to women. However, when \(\lambda \) is relatively high, men gain relatively

38This is also consistent with survey evidence from Babcock and Laschever (2003) who find that women are less informed of the market value of their work than men and are less likely to negotiate. Hall and Krueger (2012) (Table 4) find that women are roughly half as likely as men to bargain for wages, and survey evidence from Goldfarb and Tucker (2011) shows that women are more private about their pay than men.
less compared to women because all workers learn information quickly regardless of their communication propensity. In extreme cases of transparency in which the firm posts a price ($\lambda = \infty$) any communication advantage men have completely disappears as information arrival is not based on word of mouth transmission.

An important implication of these findings is that intermediate levels of transparency, or transparency relying on communication between co-workers, may exacerbate pay discrepancies. Advocates of gender equality may reconsider whether pursuing and penalizing employers that prohibit pay discussions will further their cause.

VIII. Conclusion

The norm that wages are kept private is being disputed by a call for pay transparency. While pay transparency has been in the political and popular spotlights, the equilibrium effects of making pay more transparent have not received adequate attention. Our equilibrium model of pay transparency reveals consequences that may not initially be apparent. Greater transparency increases employers’ share of the surplus from labor and decreases that of workers, while at the same time it can increase both the employment rate and pay equity. Intermediate levels of transparency can exacerbate the gender pay gap by virtue of how information spreads through co-worker networks. We corroborate these predictions with a large panel data set on short-term contract work that records the employer’s active decision to adjust pay across different settings, and where pay disparities arise through the bidding process for work, and where certain job environments allow for higher levels of pay transparency. We also run a field experiment with internet workers to test our findings in a controlled setting with exogenous variation in the level of pay transparency.

Jobs are increasingly arranged over online platforms that must actively choose how to display measures of productivity and earnings. Internet platforms must decide who makes initial wage offers and whether wages can vary for different workers for the same type of work. Our model and empirical tests allows for many generalizations and extensions which can aid with these market design choices.

We have shown theoretically that any scheme in which the firm choose transparency based on private characteristics is unsustainable, as the signal sent to prospective workers is sufficiently strong to cause unraveling toward full transparency. In the online platform that we study, employers have the choice to invite private bids or post explicit, transparent

39Katz and Krueger (2016) find that 16% of the US workforce relies on alternative work arrangements as their primary source of income, a figure which grew by over 50% between 2010 and 2015. Oyer (2016) finds that 30% of American laborers participate in alternative work arrangements. Due to the short-term nature of alternative work arrangements, online platforms often facilitate the searching, matching, tracking and transacting.
wages. We witness a voluntary move toward transparency among employers over the course of 4 years, fitting our theoretical finding. There may be a direct need for external intervention in order to maintain a socially desirable level of transparency, as our model indicates that full transparency may not be optimal from an efficiency perspective.

A key question is how our results generalize to other settings. Our empirical environment comprises low-skill workers and standardized jobs. A natural generalization is to entry-level jobs, where workers are similarly productive (or can easily perceive relative productivity differences) and are ignorant about the revenue from labor that the employer receives. An important implication of our model is that employers will select high levels of transparency, and if this generalization is a good one, we should expect to high levels of transparency in entry-level jobs. In line with our hypothesis, Hall and Krueger (2012) show that over half of junior workers in the US (fewer than 10 years labor experience) face posted wages, the highest degree of pay transparency in our analysis; they find that senior workers are half as likely to face posted wages. Niederle et al. (2006) consider entry-level jobs for gastroenterologists and find that 94% of employers pay common wages and “offers are not adjusted in response to outside offers and terms are not negotiable.” Recently, many startups in Silicon Valley are opting to be fully transparent about pay to potential job candidates, including Buffer, SumAll, Redfin, Weeby, and Tint among others.\footnote{40}

Recent state laws passed in California and Massachusetts that prohibit firms from punishing workers who discuss pay offer excellent settings to test the external relevancy of our findings, and highlight the impact that policy makers can have in setting the overall level of transparency.

Harvard University
Brown University

References

Vladimir Asriyan, William Fuchs, and Brett Green. Information Spillovers in Asset Markets with Correlated Values. *Mimeo*, 2016. I.A

Chris Nosko and Steven Tadelis. The limits of reputation in platform markets: An empirical analysis and field experiment. *Mimeo*, 2015. 20, A

IX. Tables and Figures

TABLE I.A: Summary Statistics, TaskRabbit

<table>
<thead>
<tr>
<th></th>
<th>Separated (mean)</th>
<th>Co-located (mean)</th>
<th>T-Stat (Sep. – Co.)</th>
<th>Separated (N)</th>
<th>Co-located (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial bids received ($)</td>
<td>52.2</td>
<td>52.3</td>
<td>-0.03</td>
<td>625</td>
<td>1031</td>
</tr>
<tr>
<td>Amount below max bid (%)</td>
<td>0.42</td>
<td>0.33</td>
<td>1.64</td>
<td>625</td>
<td>1031</td>
</tr>
<tr>
<td>Number hired</td>
<td>2.60</td>
<td>2.50</td>
<td>0.98</td>
<td>240</td>
<td>418</td>
</tr>
<tr>
<td>Received bids (Gini)</td>
<td>0.19</td>
<td>0.20</td>
<td>0.25</td>
<td>240</td>
<td>418</td>
</tr>
<tr>
<td>Chosen bids (Gini)</td>
<td>0.087</td>
<td>0.078</td>
<td>1.33</td>
<td>240</td>
<td>418</td>
</tr>
<tr>
<td>Positive ratings (Gini)</td>
<td>0.31</td>
<td>0.29</td>
<td>1.10</td>
<td>240</td>
<td>418</td>
</tr>
</tbody>
</table>

Notes: Co-located jobs are defined as jobs that require more than one person to be on-site concurrently to complete the job, according to the employer who enters number of slots to fill, the location and the time. Separated jobs also require multiple workers at a given time but not on-site together, for example marketing in different neighborhoods. We include in the main sample all multi-worker jobs in categories with at least 20% separated and co-located job types, resulting in 15 job categories. Results are robust to using all job categories, which we use in Appendix Tables for additional statistical power. When we extend the analysis to all co-located jobs, we have 1,862 workers and 731 jobs. The explanatory variable "amount below maximum bid" is equal to \((b_{max} - bid_i)/bid_i\) for person \(i\). The Gini coefficient is a non-parametric measure of dispersion, which varies between 0 and 1, where 0 indicates that all workers have equal allocations and 1 if a single worker is allocated everything.

TABLE I.B: Summary Statistics, TaskRabbit

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Stand. Dev.</th>
<th>25th Perc.</th>
<th>Median</th>
<th>75th Perc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share posted price</td>
<td>417</td>
<td>0.43</td>
<td>0.10</td>
<td>0.37</td>
<td>0.41</td>
<td>0.46</td>
</tr>
<tr>
<td>Market age (months)</td>
<td>417</td>
<td>16.6</td>
<td>12.2</td>
<td>6.1</td>
<td>15.3</td>
<td>26.1</td>
</tr>
<tr>
<td>Vacancy fill rate</td>
<td>417</td>
<td>0.46</td>
<td>0.11</td>
<td>0.41</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>Price ($)</td>
<td>417</td>
<td>56.1</td>
<td>8.69</td>
<td>52.0</td>
<td>57.2</td>
<td>61.0</td>
</tr>
</tbody>
</table>

Notes: City-month level summary statistics
TABLE II: SUMMARY STATISTICS, EXPERIMENT

<table>
<thead>
<tr>
<th>Transparency Treatment</th>
<th>Negotiable</th>
<th>Non-Negotiable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Transp</td>
<td>Transp</td>
</tr>
<tr>
<td></td>
<td>(mean)</td>
<td>(mean)</td>
</tr>
<tr>
<td>Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Share female</td>
<td>0.50</td>
<td>0.52</td>
</tr>
<tr>
<td>Share w/ at least some college</td>
<td>0.92</td>
<td>0.88</td>
</tr>
<tr>
<td>N</td>
<td>269</td>
<td>270</td>
</tr>
<tr>
<td>Managers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>Share female</td>
<td>0.43</td>
<td>0.58</td>
</tr>
<tr>
<td>Share w/ at least some college</td>
<td>0.92</td>
<td>0.88</td>
</tr>
<tr>
<td>N</td>
<td>104</td>
<td>67</td>
</tr>
</tbody>
</table>

Employer Budget

| | Transparent & Negotiable | Non-Negotiable | |
|----------------------|---------------------------|----------------|
| | $v = $5 | $v = $9 | |
| | (mean) | (mean) | (diff) |
| **Workers** | | | |
| Age | 36 | 35 | 1.02 |
| Share female | 0.56 | 0.46 | 1.49 |
| Share w/ at least some college | 0.91 | 0.83 | 1.86 |
| N | 164 | 108 | 223 |
| **Managers** | | | |
| Age | 38 | 34 | 1.36 |
| Share female | 0.65 | 0.43 | 1.73 |
| Share w/ at least some college | 0.89 | 0.86 | 0.43 |
| N | 46 | 21 | 83 |
TABLE III: Bonuses Among Co-located Workers, TaskRabbit

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amt. below top bid (%)</td>
<td>0.0116</td>
<td>0.0137</td>
<td>0.0191</td>
<td>0.745***</td>
<td>0.922***</td>
<td>0.848***</td>
</tr>
<tr>
<td>[0.0113]</td>
<td>[0.0115]</td>
<td>[0.0156]</td>
<td>[0.146]</td>
<td>[0.0869]</td>
<td>[0.230]</td>
<td></td>
</tr>
<tr>
<td>Years experience</td>
<td>-0.00305</td>
<td>0.0279</td>
<td>-0.107</td>
<td>0.00933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0243]</td>
<td>[0.0170]</td>
<td>[0.0858]</td>
<td>[0.126]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% positive rating overall</td>
<td>0.00186</td>
<td>-0.00559</td>
<td>0.0459</td>
<td>0.0242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.00607]</td>
<td>[0.00561]</td>
<td>[0.0309]</td>
<td>[0.0272]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% positive rating in cat.</td>
<td>0.0288</td>
<td>-0.00978</td>
<td>-0.0741</td>
<td>-0.0754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0180]</td>
<td>[0.0178]</td>
<td>[0.0801]</td>
<td>[0.0929]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. reviews</td>
<td>-0.00448</td>
<td>-0.00162</td>
<td>0.0311</td>
<td>0.00970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.00708]</td>
<td>[0.00448]</td>
<td>[0.0311]</td>
<td>[0.0334]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. reviews cat.</td>
<td>0.0442</td>
<td>-0.0194</td>
<td>-0.307*</td>
<td>-0.0235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0624]</td>
<td>[0.0434]</td>
<td>[0.177]</td>
<td>[0.204]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean rating</td>
<td>-0.0294</td>
<td>0.0342</td>
<td>0.0575</td>
<td>-0.179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0559]</td>
<td>[0.0493]</td>
<td>[0.393]</td>
<td>[0.236]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean rating in category</td>
<td>0.0883***</td>
<td>0.0845</td>
<td>-0.321</td>
<td>0.0156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0331]</td>
<td>[0.0533]</td>
<td>[0.379]</td>
<td>[0.198]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No rating</td>
<td>-0.189</td>
<td>0.0895</td>
<td>1.506</td>
<td>-1.104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.277]</td>
<td>[0.235]</td>
<td>[1.797]</td>
<td>[1.200]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No rating w/in cat.</td>
<td>0.412***</td>
<td>0.391</td>
<td>-1.768</td>
<td>0.0671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.159]</td>
<td>[0.259]</td>
<td>[1.858]</td>
<td>[0.970]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. workers (log)</td>
<td>-0.113***</td>
<td>-0.127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0233]</td>
<td>[0.0925]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean bid (log)</td>
<td>0.0409**</td>
<td>-0.304*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0.0176]</td>
<td>[0.175]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.207***</td>
<td>-0.154</td>
<td>0.216</td>
<td>0.283***</td>
<td>2.906*</td>
<td>1.121</td>
</tr>
<tr>
<td>[0.0146]</td>
<td>[0.241]</td>
<td>[0.312]</td>
<td>[0.0624]</td>
<td>[1.585]</td>
<td>[1.039]</td>
<td></td>
</tr>
</tbody>
</table>

> 1 hour overlap | ✓ | ✓ | ✓ | ✓ | ✓ |
Job FE | ✓ | ✓ |

Mean Outcome | 0.21 | 0.20 | 0.20 | 0.41 | 0.41 | 0.41 |
Std. Dev. Outcome | 0.41 | 0.40 | 0.40 | 0.38 | 0.39 | 0.39 |
Observations | 1,862 | 1,539 | 1,539 | 392 | 317 | 317 |
Clusters | 731 | 599 | 599 | 233 | 178 | 178 |
\(R^2\) | 0.001 | 0.053 | 0.828 | 0.443 | 0.575 | 0.970 |

Notes: Each model is estimated by OLS. Col. 1 through 3 are linear probability models. An observation is an accepted worker-bid for jobs with co-located workers. All co-located jobs across all categories are included. The dependent variable equals one if the particular worker earns more than their agreed to bid, and 0 otherwise. Col. 4 through 6 are restricted to those workers that do receive more than their bid. The dependent variable is the size of the raise, as percent above bid. The primary explanatory variable, amount below maximum bid, is equal to \((b_{\max} – bid^i)/bid^i\) for person \(i\). Reviews are in units of 1000. Standard errors are clustered at the level of the job.
TABLE IV: Dispersion in Final Wages and Worker Surplus

<table>
<thead>
<tr>
<th></th>
<th>TaskRabbit</th>
<th>Experimental Evidence</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final Pay (Gini)</td>
<td>Final Pay (Gini)</td>
<td>Hourly Wage (Gini)</td>
<td>Worker Surplus (Gini)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep. Var.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transp. × Bids (Gini)(^{(i)})</td>
<td>-0.0941***</td>
<td>-0.0972***</td>
<td>-0.117***</td>
<td>0.0232***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Co-located)</td>
<td>[0.0320]</td>
<td>[0.0326]</td>
<td>[0.0439]</td>
<td>[0.00707]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bids (Gini)(^{(ii)})</td>
<td>0.994***</td>
<td>0.995***</td>
<td>0.984***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.126***</td>
<td>0.141***</td>
<td>0.217**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1 hour duration</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-value Test: (H_0: (i)+(ii)=1)</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean D.V.</td>
<td>0.090</td>
<td>0.090</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev. D.V.</td>
<td>0.080</td>
<td>0.080</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>658</td>
<td>658</td>
<td>399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.927</td>
<td>0.929</td>
<td>0.929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Each model is estimated by OLS. An observation is a multi-worker local task. Standard errors are clustered at the employer level. The dependent variable in Col. 1 - 3 is the dispersion of the final pay in a TaskRabbit multi-worker job measured by the Gini Coefficient. The Gini coefficient is a non-parametric measure of dispersion, which varies between 0 and 1, where 0 indicates that all workers have equal allocations and 1 if a single worker is allocated everything.

The explanatory variable “Transp. × Bids (Gini)” captures the interaction effect between the initial dispersion in bids and an environment with co-located workers, plus the main effect for transparent work conditions. The main effect for dispersion in bids is statistically equivalent to 1 (i.e. no change in dispersion between agreed to prices ex-ante and final pay). Col. 4 - 9 present experimental evidence. The dependent variable Col. 4-5 is the dispersion in final pay, in Col. 6 and 7 dispersion in hourly wages, and in Col. 8 and 9 dispersion in worker surplus, which we measured by subtracting employees’ minimum willingness to accept the job (elicited using an incentive compatible method similar to that of Becker et al. (1964)) from the price paid. Manager characteristics in the experimental setting include gender, age, age squared managerial experience, and years of formal education.
TABLE V: Effect of Transparency on Employment, by Value of Labor

<table>
<thead>
<tr>
<th></th>
<th>TaskRabbit</th>
<th>Experimental Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3)</td>
<td>(4) (5) (6)</td>
</tr>
<tr>
<td>Dep. Var.</td>
<td>Vacancy filled (yes = 1)</td>
<td>Hired worker (yes = 1)</td>
</tr>
<tr>
<td>Low Value × Transparent (employer inc.) (public price)</td>
<td>0.0203 0.0229* 0.0409**</td>
<td>Low Value × Transparent (mgr budget) (common chat) 0.188** 0.168** 0.170**</td>
</tr>
<tr>
<td></td>
<td>[0.0139] [0.0128] [0.0200]</td>
<td>[0.0739] [0.0716] [0.0732]</td>
</tr>
<tr>
<td>Low Value</td>
<td>-0.0210* -0.0172* -0.0187</td>
<td>Low Value</td>
</tr>
<tr>
<td></td>
<td>[0.0114] [0.0101] [0.0140]</td>
<td>-0.316*** -0.251*** -0.257***</td>
</tr>
<tr>
<td>Transparent</td>
<td>0.170*** 0.132*** 0.143***</td>
<td>Transparent</td>
</tr>
<tr>
<td></td>
<td>[0.0112] [0.0103] [0.0164]</td>
<td>-0.0695 -0.0235 -0.0293</td>
</tr>
<tr>
<td>Employer Char.</td>
<td>✓ ✓</td>
<td>Manager Char.</td>
</tr>
<tr>
<td>Category FE</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>City FE, Month FE, Mkt. Age</td>
<td>✓ ✓</td>
<td>Worker Char.</td>
</tr>
<tr>
<td>Mean Dep. Var.</td>
<td>0.650 0.650 0.650</td>
<td>0.689 0.689 0.689</td>
</tr>
<tr>
<td>Observations</td>
<td>>20k >20k >20k</td>
<td>475 475 475</td>
</tr>
<tr>
<td>Clusters</td>
<td>>5k >5k >5k</td>
<td>169 169 169</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0352 0.0664 0.0745 R^2</td>
<td>0.0668 0.0883 0.112</td>
</tr>
</tbody>
</table>

Notes: Each model is a linear probability model estimated by OLS. In Col. 1-3, an observation is a job posting on TaskRabbit. The sample is restricted to jobs posted by household employers with observable earnings. The dependent variable is equal to 1 if the job posting is matched to a worker before it expires on TaskRabbit. The primary explanatory variable, lower value, is an indicator equal to 1 if the employer earns less than the median earning household in each city. Col. 4-6 are from our experimental data. An observation is worker. The dependent variable is equal to 1 if this worker is hired, and 0 otherwise. Employer characteristics from TaskRabbit include age, age squared, gender and time on the platform. Manager and worker characteristics from the experiment include age, age squared, gender and education (4 levels). Standard errors in all columns are clustered at the level of the employer. We mask the number of observations at the request of TaskRabbit.
TABLE VI: HIGHER PROFITS UNDER TRANSPARENCY

<table>
<thead>
<tr>
<th></th>
<th>TaskRabbit</th>
<th>Experimental Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5) (6)</td>
<td>(4) (5) (6)</td>
</tr>
<tr>
<td>Dep. Var.</td>
<td>All Bids (log $)</td>
<td>Wages (log $)</td>
</tr>
<tr>
<td>Transparent (Job mentions price)</td>
<td>-0.0959*** (0.0136)</td>
<td>Transparent -0.257**</td>
</tr>
<tr>
<td></td>
<td>-0.136*** (0.0142)</td>
<td>0.113* 0.617***</td>
</tr>
<tr>
<td></td>
<td>-0.0778*** (0.0281)</td>
<td>(Common chat) 0.0958</td>
</tr>
<tr>
<td></td>
<td>0.378** (0.175)</td>
<td>0.0641 [0.224]</td>
</tr>
<tr>
<td>Exp. on platform (days)</td>
<td>0.493*** (0.123)</td>
<td>High School 0.327**</td>
</tr>
<tr>
<td></td>
<td>1.048*** (0.393)</td>
<td>-0.565*** -0.746</td>
</tr>
<tr>
<td></td>
<td>-0.991*** (0.0859)</td>
<td>(Common chat) 0.0641</td>
</tr>
<tr>
<td></td>
<td>-0.512*** (0.172)</td>
<td>[0.530]</td>
</tr>
<tr>
<td>No. ratings in category</td>
<td>1.921*** (0.308)</td>
<td>Some College 0.220*</td>
</tr>
<tr>
<td></td>
<td>0.165*** (0.0546)</td>
<td>-0.417*** -1.349***</td>
</tr>
<tr>
<td></td>
<td>1.694*** (0.123)</td>
<td>[0.259]</td>
</tr>
<tr>
<td>No. ratings overall</td>
<td>0.361 (0.400)</td>
<td>College 0.550***</td>
</tr>
<tr>
<td></td>
<td>1.656*** (0.0546)</td>
<td>-0.360*** -0.890***</td>
</tr>
<tr>
<td>Mean rating in category</td>
<td>0.0476*** (0.00733)</td>
<td>Post Graduate 0.342**</td>
</tr>
<tr>
<td></td>
<td>0.0792*** (0.0199)</td>
<td>-0.309*** -1.355***</td>
</tr>
<tr>
<td></td>
<td>0.0230 (0.0363)</td>
<td>[0.309]</td>
</tr>
<tr>
<td>Mean rating overall</td>
<td>-0.00385 (0.0114)</td>
<td>Age 0.0679 -0.00707</td>
</tr>
<tr>
<td></td>
<td>-0.0168 (0.0330)</td>
<td>0.0481</td>
</tr>
<tr>
<td></td>
<td>-0.0591 (0.0796)</td>
<td>[0.0685]</td>
</tr>
<tr>
<td>Category FE</td>
<td>✓</td>
<td>Age Sqr. -0.000767</td>
</tr>
<tr>
<td>Worker FE</td>
<td>✓</td>
<td>0.00000034 -0.000298</td>
</tr>
<tr>
<td>Performance Covariates</td>
<td>✓</td>
<td>-0.000539 [0.000180]</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>[0.000832]</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>Female 0.0382 -0.0791</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>-0.452**</td>
</tr>
<tr>
<td>Mean Dep. Var.</td>
<td>3.37 (3.69)</td>
<td>3.02 (3.69)</td>
</tr>
<tr>
<td>Observations</td>
<td>>100k (19827)</td>
<td>Mean Dep. Var. 2.883</td>
</tr>
<tr>
<td></td>
<td>100k (80)</td>
<td>0.589 (47)</td>
</tr>
<tr>
<td></td>
<td>100k (90)</td>
<td>0.666 (90)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.277 (0.381)</td>
<td>0.607 (0.236)</td>
</tr>
</tbody>
</table>

Notes: Each model is estimated by OLS. In Col. 1-3 an observation is a worker-bid on TaskRabbit. The dependent variable in Col. 1 is the log bid received, and final pay in Col. 2 and 3. In Col. 3 we restrict the sample to jobs that solicit hourly wage bids rather than piece rate. Only a small fraction of jobs on TaskRabbit solicit hourly rather than piece rate bids. Transparency in TaskRabbit refers to an indicator equal to one if there is any mention of price in the job post. Only job posts that accept private bids are included in these regressions. Platform tenure is measured in days. Performance covariates include the square of all ratings covariates. In Col. 4-6, our sample is from our experimental setting. An observation is a worker (Col. 4) or manager (Col. 5-6) in our experiment. The dependent variables are log wages, share of participants hired to complete the transcription, and inverse hyperbolic sine of profits a manager earns. Education is a categorical variable with reference category, some high school. Covariates refer to the worker in Col. 4, and the manager in Col. 5-6. Robust standard errors are in square brackets. We do not reveal observation counts for aggregate activity on the platform at the request of the company.
TABLE VII: GENDER GAP IN LIKELIHOOD OF RAISE RISES WITH PAY TRANSPARENCY,
TaskRabbit

<table>
<thead>
<tr>
<th>Dep.Var.</th>
<th>Any Raise (Yes = 1)</th>
<th>Final Pay (% Above Bid)</th>
<th>Any Raise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Transparent</td>
<td>0.187***</td>
<td>0.191***</td>
<td>0.137***</td>
</tr>
<tr>
<td>(Co-located)</td>
<td>[0.0291]</td>
<td>[0.0319]</td>
<td>[0.0331]</td>
</tr>
<tr>
<td>Transparent × Female</td>
<td>-0.141***</td>
<td>-0.118***</td>
<td>-0.0906**</td>
</tr>
<tr>
<td></td>
<td>[0.0390]</td>
<td>[0.0436]</td>
<td>[0.0445]</td>
</tr>
<tr>
<td>Amt. under top bid (%)</td>
<td>0.0154</td>
<td>0.0123</td>
<td>0.0640**</td>
</tr>
<tr>
<td></td>
<td>[0.0259]</td>
<td>[0.0267]</td>
<td>[0.0271]</td>
</tr>
<tr>
<td>Female × Amt. under top bid (%)</td>
<td>0.0116</td>
<td>0.0153</td>
<td>-0.146*</td>
</tr>
<tr>
<td></td>
<td>[0.0214]</td>
<td>[0.0210]</td>
<td>[0.0782]</td>
</tr>
<tr>
<td>Female</td>
<td>0.00177</td>
<td>-0.000771</td>
<td>0.0473</td>
</tr>
<tr>
<td></td>
<td>[0.00601]</td>
<td>[0.00583]</td>
<td>[0.0318]</td>
</tr>
<tr>
<td>Years experience</td>
<td>0.0235</td>
<td>0.00909</td>
<td>-0.0762</td>
</tr>
<tr>
<td></td>
<td>[0.0151]</td>
<td>[0.0147]</td>
<td>[0.0814]</td>
</tr>
<tr>
<td>No. reviews</td>
<td>-0.00905</td>
<td>-0.00842</td>
<td>0.0366</td>
</tr>
<tr>
<td></td>
<td>[0.00653]</td>
<td>[0.00627]</td>
<td>[0.0308]</td>
</tr>
<tr>
<td>No. reviews cat.</td>
<td>0.0454</td>
<td>0.00822</td>
<td>-0.317*</td>
</tr>
<tr>
<td></td>
<td>[0.0424]</td>
<td>[0.0392]</td>
<td>[0.173]</td>
</tr>
<tr>
<td>Mean rating</td>
<td>-0.0269</td>
<td>-0.0255</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>[0.0524]</td>
<td>[0.0526]</td>
<td>[0.342]</td>
</tr>
<tr>
<td>Mean rating in category</td>
<td>0.104***</td>
<td>0.0847**</td>
<td>-0.413</td>
</tr>
<tr>
<td></td>
<td>[0.0325]</td>
<td>[0.0334]</td>
<td>[0.351]</td>
</tr>
<tr>
<td>No rating</td>
<td>-0.121</td>
<td>-0.108</td>
<td>1.731</td>
</tr>
<tr>
<td></td>
<td>[0.257]</td>
<td>[0.259]</td>
<td>[1.484]</td>
</tr>
<tr>
<td>No rating w/in cat.</td>
<td>0.490***</td>
<td>0.411**</td>
<td>-2.192</td>
</tr>
<tr>
<td></td>
<td>[0.158]</td>
<td>[0.160]</td>
<td>[1.730]</td>
</tr>
<tr>
<td>No. workers (log)</td>
<td>-0.0673***</td>
<td>-0.0918</td>
<td>-0.0989</td>
</tr>
<tr>
<td></td>
<td>[0.0220]</td>
<td>[0.102]</td>
<td>[0.135]</td>
</tr>
<tr>
<td>Mean bid (log)</td>
<td>-0.0181</td>
<td>-0.324*</td>
<td>-0.378*</td>
</tr>
<tr>
<td></td>
<td>[0.0202]</td>
<td>[0.177]</td>
<td>[0.212]</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0785***</td>
<td>-0.330*</td>
<td>-0.252</td>
</tr>
<tr>
<td></td>
<td>[0.0179]</td>
<td>[0.199]</td>
<td>[0.0785]</td>
</tr>
</tbody>
</table>

Notes: Each model is estimated by OLS. An observation is a worker-bid in a co-located, multi-worker job on TaskRabbit using a private auction, in categories with (at least 20 percent) separated and co-located jobs. The sample is restricted to those with self-reported gender information (96 percent of workers). Col. 1 through 3 are linear probability models. The dependent variable equals 1 if the particular worker earns more than their initial bid, and 0 otherwise. Col. 4 through 6 are restricted to those workers who receive more than their bid. The dependent variable is the size of the raise, as percent above bid. The primary explanatory variable is an indicator for whether the job entails co-location of workers (a measure of partial transparency) and its interaction with the gender of the worker. Standard errors are clustered at the level of the job.
Figure I: Effects of increasing Λ on worker and firm strategies

Notes: (a) By Equation 3, worker i picks an initial wage offer w_i^* that equalizes $\frac{w - \theta_i}{1 - \Lambda}$ (the black, upward sloping line) and $\frac{1 - F(w)}{f(w)}$ (the orange, downward sloping line). (b) The demand effect of increasing Λ from 0 to $\frac{3}{4}$ reduces \bar{w} for each v, shifting $\frac{1 - F(w)}{f(w)}$ to the left. (c) The supply effect of increasing Λ from 0 to $\frac{3}{4}$ increases the slope of the function $\frac{w - \theta_i}{1 - \Lambda}$. (d) The supply and income effects combine to reduce the initial wage offer of worker i to $w_i^{*'}$ when Λ increases.
Figure II: Expected difference in equilibrium wages T periods after entering the market

Notes: Figure II shows the expected difference in the wage of two workers, i and j T periods after each has entered the market when $\theta_i > \theta_j$. The dashed (black) curve represents this difference when $\Lambda = 1/2$, $\rho + \delta = 1$, $r = s = 1$, and the solid (orange) curve represents this difference when $\Lambda = 1/3$, $\rho + \delta = 1$, $r = s = 1$. Although the dashed curve is initially above the solid one, the two curves satisfy a single-crossing condition in t.

Figure III: Posted price and market age

Notes: Figure III plots the age of each TaskRabbit market (horizontal axis) and the proportion of posted price jobs in each market (vertical axis) at the end of our data sample in June, 2014. Older markets appear to be associated with a higher proportion of posted price jobs. “Virtual” refers to tasks that are completed by workers online. As location is not relevant for these types of markets, TaskRabbit rolled out virtual tasks country-wide at the same time. TaskRabbit entered Boston in 2008 nearly two years before the start of our data sample. In our analysis we treat the Boston market as if it started at the same date as our data sample, but in reality, there are many months that we do not observe.
Figure IV: Posted price and market age

Notes: Figure IV is a bincscatter plot of a balanced panel of 9 local markets active for longer than a year. The means are adjusted for city-level effects, total size of market measured by the number of job listings, and the share of job postings in each of the 8 largest categories. We also include in Appendix Table A9 a full table of regression results with a more complete set of controls and observations.
Figure V: Productivity consequences of transparency when pay is non-negotiable

Notes: We plot regression coefficients and robust standard errors, using OLS, from the interaction between co-worker wage differences and an indicator equal to one if co-workers can observe others’ wages and wages are fixed (the manager was instructed to accept all bids without negotiating, conditional on satisfying their budget), and zero if pay is private. We group the distance from highest bid accepted into three bins, exactly equal, between 0 and $1 in distance, and $1 upwards. The data include 150 managers, and 267 workers who bid less than or equal to the $5 budget.

Figure VI: Difference in de facto arrival rate of wage info between genders as a function of \(\lambda \)

Notes: Figure VI plots \(\lambda \) (horizontal axis) and the difference in the de facto rate of information arrival between men and women. This difference is initially increasing in \(\lambda \), but after a single peak, it decreases toward 0. Parameters used: \(\alpha_m = 2, \alpha_f = 1, \rho + \delta = 1 \).
Figure VII: Expectations of learning co-worker pay on-the-job

Notes: This figure is a kernel density constructed from 5,000 responses from online workers who read through job descriptions on TaskRabbit and answered questions about the likelihood that two co-workers would compare notes about their pay after meeting for the first time on-the-job. “Female co-workers” refers to a vignette with two people named Samantha and Alexis, and “male co-workers” refers to a vignette with two people names Sam and Alex.
A. Tests of alternative explanations

In this section we assess mechanisms other than communication about pay per se that could explain the distinct wage setting behavior we observe when workers are co-located. Chief among them are productivity spillovers, either observed or perceived. Under a pay-for-performance framework, an employer may assign more compressed wages to workers if their performance converges or if the employer cannot attribute the output to individual workers.

Perceived productivity differences, as the explanation for the wage compression we observe, requires that (1) employers compensate workers according to their on-the-job assessed performance and (2) assessed performance of co-workers is less dispersed when workers are together.

We find evidence that a component of pay reflects on-the-job performance using a measure of performance constructed from back-end administrative data (effective percent positive score (EPP), detailed in Nosko and Tadelis (2015)). However, we do not find empirical evidence to support (2). Performance measures are no more dispersed or compressed when workers are co-located. In Table A3, the dependent variable is the dispersion of ratings given to workers at the conclusion of the job, expressed as the Gini coefficient. An indicator variable of whether these workers operate together or separately proves uninformative about the final dispersion of ex-post ratings. Since we find no evidence that employer evaluations (or ex-post ratings) converge among workers when they are together, it is unlikely that productivity drives the wage compression we observe.

More generally, there is a weak relationship between bids and productivity. Our lifetime performance measure for workers, which employers can not fully observe at the time of hire, are not reflected in offers and accepted bids (Table A2 Col.1). When we can observe productivity directly in our field experiment we find a small and insignificant relationship between output and bids. A high productivity type might have both lower costs of effort and higher opportunity costs. While our measures of productivity on TaskRabbit are strong predictors of real outcomes (return customers) they do not explain much of the variance in market wage, so any systematic pattern of spillovers does not necessarily raise the performance of the low bidder or the pay of the low bidder per se. In other words, a model of positive spillovers where the most productive worker pulls up the performance of the least productive worker, would not imply that the lowest bidder improves performance per se and hence compressed performance pay.

We also do not find evidence of compression resulting from employer preferences for equity among workers hired to do the same tasks. Among workers assessed as equivalently productive by the same employer, those hired to work concurrently in one location earn more equal pay than those hired by the same employer to work in physically separated locations.
Hence, an intrinsic preference for pay equity is unlikely to be the driver of wage compression. As additional evidence, we also find that employers pay workers more equally when the low bidder is male. And, even among co-located jobs, employers pay workers more equally when the likelihood of communication is particularly high, according to survey evidence.

TABLE A1: HIDDEN ADMINISTRATIVE MEASURE OF WORKER QUALITY (EPP) PREDICTS EMPLOYER SATISFACTION, TaskRabbit

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.</td>
<td>Employer returns</td>
<td>Positive rating</td>
</tr>
<tr>
<td>EPP (Effect Percent Positive Rating)</td>
<td>1.591***</td>
<td>5.858***</td>
</tr>
<tr>
<td></td>
<td>[6.154]</td>
<td>[20.19]</td>
</tr>
<tr>
<td>Ex-Ante mean rating</td>
<td>0.955**</td>
<td>0.876***</td>
</tr>
<tr>
<td></td>
<td>[-2.456]</td>
<td>[-5.611]</td>
</tr>
<tr>
<td>Prior # closed offers</td>
<td>1.075***</td>
<td>0.857***</td>
</tr>
<tr>
<td></td>
<td>[6.562]</td>
<td>[-11.72]</td>
</tr>
<tr>
<td>Constant</td>
<td>0.168</td>
<td>1.035</td>
</tr>
<tr>
<td></td>
<td>[-1.156]</td>
<td>[0.0261]</td>
</tr>
<tr>
<td>Category FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Worker characteristics</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Job Characteristics</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>> 100k</td>
<td>> 100k</td>
</tr>
</tbody>
</table>

Exponentiated coefficients; t statistics in brackets

Notes: Each model is estimated using maximum likelihood assuming extreme value type-1 distributed errors (logistic regression). An observation is a matched worker-job in TaskRabbit. In Col. 1 the dependent variable equals 1 if the employer returns to the platform after the job is completed, giving her the option to rate the worker. The dependent variable in Col. 2 is equal to 1 if the worker receives a positive review after the job is complete, 0 otherwise. Positive review is defined as either a 4 or 5 on the 5 star scale. Standard errors are clustered at the job level. T-statistics are reported in brackets beneath the point estimate. Job characteristic controls include category fixed effects and proxies for transparency of the job requirements, including the length of description and frequency of posts in same category. We also include the number of bidders (log) and equipment requirements.
TABLE A2: Worker quality measure (EPP) predicts ex-post pay but not ex-ante pay, TaskRabbit

<table>
<thead>
<tr>
<th>Dep Var:</th>
<th>Column (1)</th>
<th>Column (2)</th>
<th>Column (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bid (log)</td>
<td>Raise (%)</td>
<td>Raise (%)</td>
</tr>
<tr>
<td>Ex-ante EPP</td>
<td>0.00960</td>
<td>0.0771*</td>
<td>0.229**</td>
</tr>
<tr>
<td></td>
<td>[0.0461]</td>
<td>[0.0431]</td>
<td>[0.0927]</td>
</tr>
<tr>
<td>× Separate places</td>
<td>-0.0904</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0821]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Virtual</td>
<td>-0.162**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0797]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× Single Worker</td>
<td>-0.149*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0905]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry Month FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Category FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Worker characteristics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Job Characteristics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mean Dep. Var.</td>
<td>3.63</td>
<td>0.129</td>
<td>0.129</td>
</tr>
<tr>
<td>Observations</td>
<td>>100k</td>
<td>>100k</td>
<td>>100k</td>
</tr>
<tr>
<td>R^2</td>
<td>0.238</td>
<td>0.00583</td>
<td>0.00456</td>
</tr>
</tbody>
</table>

Notes: All models are estimated by OLS. An observation is the bid from a worker assigned to a job on TaskRabbit. The dependent variable is the log bid in Col. 1 and ex-post pay out above and beyond the initial bid in Col. 2 and 3. Standard errors are closed at the level of the worker.
TABLE A3: Dispersion in Perceived Worker Performance, TaskRabbit

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Worker Performance Ratings (Gini)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent (Co-located)</td>
<td>-0.00955 0.0142 0.0238 0.0800</td>
</tr>
<tr>
<td>Ex-ante EPP (Gini)</td>
<td>0.455*** 0.384*** 0.364*** 0.688***</td>
</tr>
<tr>
<td>Transparent × EPP (Gini)</td>
<td>-0.0437 -0.122 -0.146 -0.387</td>
</tr>
<tr>
<td>No. workers (log)</td>
<td>0.142*** 0.185*** 0.254</td>
</tr>
<tr>
<td>Mean bid (log)</td>
<td>0.0483** 0.0427* -0.00807</td>
</tr>
<tr>
<td>Constant</td>
<td>0.226*** -0.0171 -0.0332 0.194</td>
</tr>
<tr>
<td>Category FE</td>
<td>✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Duration > 1hr</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Jobs with bonuses</td>
<td>✓</td>
</tr>
<tr>
<td>Mean Outcome</td>
<td>0.30 0.30 0.30 0.23</td>
</tr>
<tr>
<td>Std. Dev. Outcome</td>
<td>0.28 0.28 0.28 0.28</td>
</tr>
<tr>
<td>Observations</td>
<td>658 658 532 118</td>
</tr>
<tr>
<td>Clusters</td>
<td>421 421 356 110</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0492 0.133 0.144 0.249</td>
</tr>
</tbody>
</table>

Notes: Each model is estimated by OLS. An observation is a multi-worker job in TaskRabbit. The dependent variable is the dispersion in ratings received after work is completed, measured by a Gini coefficient. Ex-ante ratings are measured as the share of positive ratings at the time of hire. Standard errors are clustered at the employer level.

A.1. Strategic bidding, worker selection, and unanticipated transparency

For a causal interpretation of the effect of co-location on ex-post relative wages in our TaskRabbit population, we must show the composition of workers is similar across settings as are worker bids. Prima facie evidence supports these assumptions. Multi-worker tasks comprise fewer than 5% of posted jobs and workers are often unaware that more than one vacancy exists even when it does. Additionally, employers rarely have more offers that the number necessary to complete a multi-worker job. Here we offer more empirical tests.

We observe that the mean and dispersion of bids received are similar across job settings. We also find that dispersion in selected offers is not different across setting. Irrespective of work setting, employers select bids that exhibit roughly one-third of the dispersion of offers received.

As another test of our assumptions that workers, in this particular environment, do not bid strategically in anticipation of learning pay, we split a sample of co-located jobs by...
whether or not the employer explicitly mentions that the tasks require multiple people (e.g. “we need two people to load boxes” vs “load boxes between 12-2p”). 35% of job postings for co-located, multi-worker jobs do not reveal to workers that there are other workers on the job. In these jobs, workers are unlikely to be able to anticipate transparency. We find almost all worker characteristics are not statistically different (Table A4). Table A5 shows we cannot reject that bids are similar among those bidding on postings that do and do not reveal multiple workers are required. However, we may not have the specification or power required to detect many forms of strategic bidding.

TABLE A4: Comparision of worker characteristics for job postings that do or do not mention multiple workers required, TaskRabbit

<table>
<thead>
<tr>
<th>Does the Multi-Worker Job Mention More than One Required?</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant Characteristics</td>
<td>No</td>
<td>Yes</td>
<td>T-Statistic</td>
</tr>
<tr>
<td>Years experience</td>
<td>0.44</td>
<td>0.46</td>
<td>-0.84</td>
</tr>
<tr>
<td>(0.02)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.49</td>
<td>0.42</td>
<td>3.73</td>
</tr>
<tr>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective percent positive overall</td>
<td>33.03</td>
<td>38.09</td>
<td>-1.32</td>
</tr>
<tr>
<td>(3.10)</td>
<td>(2.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior # closed jobs</td>
<td>0.64</td>
<td>0.71</td>
<td>-1.59</td>
</tr>
<tr>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean rating (=0 if none)</td>
<td>4.21</td>
<td>4.28</td>
<td>-1.06</td>
</tr>
<tr>
<td>(0.05)</td>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No rating (=1 if none)</td>
<td>0.14</td>
<td>0.12</td>
<td>1.27</td>
</tr>
<tr>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Applicants</td>
<td>1,086</td>
<td>2,133</td>
<td></td>
</tr>
<tr>
<td># Jobs</td>
<td>131</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

Notes: An observation is a worker-bid. Results are similar if workers only enter a comparison group once, as a unique worker who bids at least once in the comparison group.
<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Mention</td>
<td>0.0282</td>
<td>0.0296</td>
<td>0.0380</td>
<td>0.0404</td>
<td>0.0276</td>
</tr>
<tr>
<td></td>
<td>[0.0616]</td>
<td>[0.0620]</td>
<td>[0.0424]</td>
<td>[0.0427]</td>
<td>[0.0606]</td>
</tr>
<tr>
<td>No. workers (log)</td>
<td>-0.0189</td>
<td>0.0397</td>
<td>0.0443</td>
<td>0.00869</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0880]</td>
<td>[0.0625]</td>
<td>[0.0618]</td>
<td>[0.0783]</td>
<td></td>
</tr>
<tr>
<td>Duration (hours)</td>
<td>0.0721***</td>
<td>0.0722***</td>
<td>0.0638***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0188]</td>
<td>[0.0189]</td>
<td>[0.0173]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years experience</td>
<td>0.131***</td>
<td>2.618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0217]</td>
<td>[2.004]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-0.0936***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0237]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective percent positive overall</td>
<td>0.0000831</td>
<td>-0.0000509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.000140]</td>
<td>[0.000222]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior # closed jobs</td>
<td>-0.00399</td>
<td>-0.0162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0174]</td>
<td>[0.0353]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. reviews</td>
<td>-0.00377</td>
<td>0.0115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.00977]</td>
<td>[0.0361]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean rating</td>
<td>-0.0443</td>
<td>-0.292</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0543]</td>
<td>[0.216]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No rating</td>
<td>-0.183</td>
<td>-1.372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.276]</td>
<td>[1.082]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.962***</td>
<td>3.974***</td>
<td>4.068***</td>
<td>3.875***</td>
<td>8.148***</td>
</tr>
<tr>
<td></td>
<td>[0.0676]</td>
<td>[0.0840]</td>
<td>[0.122]</td>
<td>[0.366]</td>
<td>[2.358]</td>
</tr>
</tbody>
</table>

Performance measures w/in Cat. ✓ ✓
Category FE ✓ ✓
Worker FE ✓

Mean Outcome 3.96 3.96 3.96 3.96 3.96
Std. Dev. Outcome 0.71 0.71 0.71 0.71 0.71
Observations 3.219 3.219 3.219 3.219 3.219
Clusters 371 371 371 371 371

R² 0.078 0.078 0.252 0.273 0.790

Notes: All models are estimated using OLS. The dependent variable is the log bid of bids received. The sample is randomly selected from multi-worker co-located jobs. The key explanatory variable “any mention” is equal to 1 if readers of the job description report multiple workers are required to complete the job, and 0 otherwise. “No workers” refers to the actual number of workers that the employer requested directly to the platform (whether or not it is mentioned in the job description), so that the platform knows not to close the job until the number is reached or the post expires. Performance measures also include overall (in addition to category) measures of ratings and prior experience. Standard errors are clustered at the level of the job.
TABLE A6: SUMMARY STATISTICS BY PRICE MECHANISM, TaskRabbit

<table>
<thead>
<tr>
<th></th>
<th>Public Price (mean)</th>
<th>Priv. Auction (mean)</th>
<th>T-Stat (Public− Auct.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial wages ($)</td>
<td>40.72</td>
<td>64.08</td>
<td>-122.6</td>
</tr>
<tr>
<td>Share jobs in category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery</td>
<td>0.321</td>
<td>0.122</td>
<td>144.7</td>
</tr>
<tr>
<td>Cleaning</td>
<td>0.065</td>
<td>0.101</td>
<td>-37.35</td>
</tr>
<tr>
<td>Moving help</td>
<td>0.098</td>
<td>0.110</td>
<td>-10.50</td>
</tr>
<tr>
<td>Furniture assembly</td>
<td>0.047</td>
<td>0.051</td>
<td>-4.32</td>
</tr>
<tr>
<td>Home repair</td>
<td>0.054</td>
<td>0.071</td>
<td>-19.51</td>
</tr>
<tr>
<td>Research</td>
<td>0.042</td>
<td>0.056</td>
<td>-19.47</td>
</tr>
<tr>
<td>Writing</td>
<td>0.010</td>
<td>0.018</td>
<td>-18.89</td>
</tr>
</tbody>
</table>

Notes: Summary statistics of all jobs. Share jobs in category refers to the share of all public price (or private auction) jobs in the largest 7 job categories. Observation numbers are intentionally obscured at the request of TaskRabbit. All categories have over 50,000 observations. 48% of accepted bids are for publicly-priced jobs. 41% of jobs posted and 43% of employers choose publicly-priced job postings.
TABLE A7: Endogenous Selection of Transparent Pricing, TaskRabbit

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employer Lower Income</td>
<td>0.0622**</td>
<td>0.0641**</td>
<td>0.0456*</td>
<td>0.0452*</td>
<td>0.0579*</td>
</tr>
<tr>
<td></td>
<td>[0.0269]</td>
<td>[0.0272]</td>
<td>[0.0270]</td>
<td>[0.0270]</td>
<td>[0.0329]</td>
</tr>
<tr>
<td>Employer Age</td>
<td>-0.00147***</td>
<td>-0.000511</td>
<td>-0.000536</td>
<td>-0.00109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.000557]</td>
<td>[0.000524]</td>
<td>[0.000528]</td>
<td>[0.000672]</td>
<td></td>
</tr>
<tr>
<td>Empl. Gender (Fem = 1)</td>
<td>-0.0130</td>
<td>-0.00901</td>
<td>-0.00921</td>
<td>-0.0144</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0148]</td>
<td>[0.0130]</td>
<td>[0.0129]</td>
<td>[0.0163]</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.323***</td>
<td>0.390***</td>
<td>0.221***</td>
<td>0.256***</td>
<td>0.215***</td>
</tr>
<tr>
<td></td>
<td>[0.0259]</td>
<td>[0.0359]</td>
<td>[0.0538]</td>
<td>[0.0602]</td>
<td>[0.0720]</td>
</tr>
<tr>
<td>Category FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City FE, Month FE, Mkt. Age</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude 1st time users</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Mean Dep. Var.</td>
<td>0.423</td>
<td>0.423</td>
<td>0.423</td>
<td>0.423</td>
<td>0.423</td>
</tr>
<tr>
<td>Observations</td>
<td>>20k</td>
<td>>20k</td>
<td>>20k</td>
<td>>20k</td>
<td>>20k</td>
</tr>
<tr>
<td>Clusters</td>
<td>>5k</td>
<td>>5k</td>
<td>>5k</td>
<td>>5k</td>
<td>>5k</td>
</tr>
<tr>
<td>R²</td>
<td>0.000432</td>
<td>0.00177</td>
<td>0.100</td>
<td>0.102</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Notes: All columns are linear probability models estimated by OLS. An observation is a job post on TaskRabbit. The sample is restricted to jobs posted by household employers with observable earnings. The dependent variable is equal to 1 if the employer chose to post the job using a transparent (public) posted price, and 0 if the employer chooses to accept private bids. The primary explanatory variable, low income, is an indicator equal to 1 if the employer earns less than the median earning household in each city. Standard errors are clustered at the level of the employer. Observation numbers are intentionally obscured at the request of TaskRabbit.

A.2. Market Unraveling

We find evidence that TaskRabbit markets unravel toward the use of posted price by more employers in Section IV.H, which supports the finding of Corollary 2.

We discuss possible alternative explanations for this market trend toward posted price, and why we do not believe these to be plausible explanations of our observations.

One alternative explanation for this trend is that employers initially accept bids to learn about workers’ outside options and in subsequent tasks use a posted price. We do not believe this to be a convincing explanation for this observation because employers are short-lived in TaskRabbit. The majority of employers only post a single task on the platform, and the vast majority of employers post no more than three tasks. Nearly 80% of employers who participate in the platform do not experiment, that is, they use either posted price or bid acceptance for all of their tasks. Finally, even persisting employers are relatively short-lived; no employer is active in the platform for more than one year. Given the four year time horizon of our data, it is likely that the composition of employers within early-adopting cities to have reached steady state. The pattern of a linear move toward posted prices, therefore,
seems unlikely to be due to experimentation. Another alternative is put forth by Einav et al. (2018). They find that eBay’s auction format became much less used than its posted price format between 2003 and 2009. They argue that this is primarily driven by a change in user preferences. In 2003 there were not many exciting internet alternatives, and so buyers preferred the fun associated with bidding in auctions. But by 2009 with the advent of Web 2.0 websites like youtube.com and facebook.com, there were better avenues for entertainment on the internet. Could a similar phenomenon be occurring in TaskRabbit? Again, we do not believe so. Our data sample (albeit for a different service) begins around the time that the sample of Einav et al. (2018) ends, certainly after the popularization of Web 2.0 and plenty of entertainment websites. Second, our time horizon is relatively short compared to theirs, and we observe a large move toward posted prices. Only a drastic change in preferences over a short period of time could explain this. Third, TaskRabbit staggers entry into different markets, and therefore, we observe wide variance in market age. Despite this, we observe a strong linear trend toward posted price in markets of different ages. This is on display in Figure III. Finally, and perhaps most convincingly, the “fun” workers can have through static bidding on TaskRabbit is more limited than on eBay—workers are unable to track their bids and update their offers over time in response to others. Although changing preferences cannot completely be ruled out in TaskRabbit data, a mechanism such as Einav et al.’s does not seem likely to lead to the move toward posted price in TaskRabbit.

41Additionally, there may be little need to rely on direct experimentation to learn about prices, as information on job pricing in TaskRabbit exists on websites including Glassdoor, Quora, and Reddit, in addition to word-of-mouth information acquisition. Furthermore, a website including empirical analyses of “optimal” TaskRabbit pricing exists, meaning that employers can potentially use the data of previous job posters to optimally select their pricing strategies. For example, Kerzner (2013) contains publicly available empirical analyses of pricing strategies in TaskRabbit.
Notes: Each panel plots the outside option of a participant (horizontal axis) as measured by our BDM procedure against the participant’s bid on the job for completion of a page of transcription (vertical axis), both at a minimum accuracy of 95%. In the first panel, we fit the data to a best linear fit of outside option, and in the second, we regress on both outside option and outside option squared. The best fit curves are nearly identical.
Figure A2: TaskRabbit Online Interface for Workers

Notes: Panel (a) displays a list of job postings that a worker can see. Panel (b) gives the details posted by the employer about one of the jobs from the job listings page. Screenshots taken on December 14th, 2013. Faces and identifiable information have been intentionally blurred. A similar figure appears in Cullen and Farronato (2016).
TABLE A8: Worker-Bid Level Pay Compression, TaskRabbit

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Final Pay (% over bid)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amt. under top bid (%)<sup>(i)</sup></td>
<td>0.437**</td>
<td>0.440**</td>
<td>0.441**</td>
<td>0.370**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.181]</td>
<td>[0.182]</td>
<td>[0.183]</td>
<td>[0.184]</td>
</tr>
<tr>
<td>Separate × Amt. under top bid (%)<sup>(ii)</sup></td>
<td>-0.444**</td>
<td>-0.445**</td>
<td>-0.443**</td>
<td>-0.362**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.181]</td>
<td>[0.184]</td>
<td>[0.183]</td>
<td>[0.184]</td>
</tr>
<tr>
<td>Virtual × Amt. under top bid (%)<sup>(iii)</sup></td>
<td>-0.350*</td>
<td>-0.338*</td>
<td>-0.339*</td>
<td>-0.251</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.190]</td>
<td>[0.191]</td>
<td>[0.191]</td>
<td>[0.197]</td>
</tr>
<tr>
<td>Separate</td>
<td>0.00958</td>
<td>0.0585</td>
<td>0.0588</td>
<td>0.0605</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0532]</td>
<td>[0.0539]</td>
<td>[0.0538]</td>
<td>[0.0769]</td>
</tr>
<tr>
<td>Virtual</td>
<td>-0.0122</td>
<td>0.0718</td>
<td>0.0670</td>
<td>-0.135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0631]</td>
<td>[0.0926]</td>
<td>[0.0914]</td>
<td>[0.103]</td>
</tr>
<tr>
<td>Years experience</td>
<td>0.00934</td>
<td>0.0107</td>
<td>0.0215</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0236]</td>
<td>[0.0230]</td>
<td>[0.0285]</td>
<td></td>
</tr>
<tr>
<td>No. workers (log)</td>
<td>-0.118***</td>
<td>-0.117***</td>
<td>-0.0781</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0449]</td>
<td>[0.0426]</td>
<td>[0.0539]</td>
<td></td>
</tr>
<tr>
<td>Mean bid (log)</td>
<td>-0.0257</td>
<td>-0.0311</td>
<td>-0.168**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0361]</td>
<td>[0.0333]</td>
<td>[0.0718]</td>
<td></td>
</tr>
<tr>
<td>Effective percent positive overall</td>
<td>0.00457</td>
<td>0.00456</td>
<td>-0.00830</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0116]</td>
<td>[0.0113]</td>
<td>[0.0103]</td>
<td></td>
</tr>
<tr>
<td>No. reviews</td>
<td>-0.00865</td>
<td>-0.00824</td>
<td>-0.00830</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.00852]</td>
<td>[0.00843]</td>
<td>[0.0101]</td>
<td></td>
</tr>
<tr>
<td>Mean rating</td>
<td>0.0232</td>
<td>0.0246</td>
<td>0.0133</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0614]</td>
<td>[0.0604]</td>
<td>[0.0623]</td>
<td></td>
</tr>
<tr>
<td>Mean rating in category</td>
<td>-0.0585</td>
<td>-0.0533</td>
<td>-0.127</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.103]</td>
<td>[0.0883]</td>
<td>[0.104]</td>
<td></td>
</tr>
<tr>
<td>No rating</td>
<td>0.113</td>
<td>0.121</td>
<td>0.0198</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.306]</td>
<td>[0.301]</td>
<td>[0.309]</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.0396</td>
<td>0.279</td>
<td>0.261</td>
<td>1.353</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.0497]</td>
<td>[0.724]</td>
<td>[0.648]</td>
<td>[0.885]</td>
</tr>
</tbody>
</table>

Performance w/in Cat.	✓	✓	✓
Category FE	✓	✓	
Employer FE		✓	

P-value Test: $H0: (i)=(ii)$

| P-value Test: $H0: (i)=(iii)$ | 0.211 | 0.652 | 0.776 | 0.533 |
| P-value Test: $H0: (i)=(iii)$ | 0.133 | 0.094 | 0.094 | 0.108 |

Mean Outcome

Std. Dev. Outcome	0.11	0.11	0.11	0.11
Observations	1,313	1,313	1,313	1,313
Clusters	440	440	440	440
R^2	0.243	0.274	0.274	0.581

Notes: Each model is estimated by OLS. An observation is an accepted worker-bid for a multi-worker job on TaskRabbit. The dependent variable is the size of the raise, as percent above the worker’s initial bid. The primary explanatory variable, amount under the maximum bid, is equal to $(\text{bid}_{\text{max}} - \text{bid}_i) / \text{bid}_i$ for person i. Separate refers to jobs that are local but where workers are separated physically. Virtual refers to jobs carried out entirely online. "Performance w/in Cat." refers to the inclusion of the covariates capturing overall performance on the platform, replicated within each category. Standard errors are clustered at the level of the job.
<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Proportion of Jobs with Posted Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market age (months)</td>
<td>0.0109*** 0.00894* 0.0119*** 0.0102**</td>
</tr>
<tr>
<td></td>
<td>[0.0000198] [0.00426] [0.00103] [0.00383]</td>
</tr>
<tr>
<td>City FE, Month FE</td>
<td>✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Number of posts per month (thousands)</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Share of jobs in each category</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Observations</td>
<td>417 417 417 417</td>
</tr>
<tr>
<td>Clusters</td>
<td>19 19 19 19</td>
</tr>
<tr>
<td>R^2</td>
<td>0.668 0.731 0.717 0.734</td>
</tr>
</tbody>
</table>

Notes: Each model is estimated by OLS. An observation is a city-month in TaskRabbit. The dependent variable is the proportion of tasks that use the transparent posted price scheme. Standard errors are clustered at the city level.
B. Omitted proofs

Proof of Proposition 1:

It is easy to see that for all times $t \geq 0$ there exists at least one worker earning \bar{w}. Therefore, conditional on receiving wage information, every worker will offer the highest wage visible which equals \bar{w}. It remains to prove that in equilibrium a worker will never renegotiate without the arrival of wage information. Without loss of generality, let a worker enter the market at $t = 0$ and (in an abuse of notation) let ω_t denote the wage the worker offers at time t in the absence of arrival of wage information on equilibrium path. If the worker does not renegotiate between times t' and t'' then let $\omega_t = \omega_{t'}$ for all $t \in [t', t'']$. On equilibrium path satisfying A1-A5, an optimal sequence $\omega^* \equiv \{\omega^*_t\}_{t \geq 0}$ is a non-decreasing sequence bounded above by 1, since the firm will never set $\bar{w} > 1$. Let $u(\omega)$ denote the worker’s expected discounted equilibrium utility from sequence ω, and $u(\omega|t)$ as the additional discounted expected utility the worker receives starting at time t by following ω over ceasing to renegotiate further. Let $U(\omega, t)$ represent the ex-ante expected utility sequence ω yields over the first t periods.

Towards a contradiction, suppose ω^* is not a constant sequence. In equilibrium it must be the case that $u(\omega^*|t) \geq 0$ for all $t > 0$. First, let us consider the case in which $u(\omega^*|t) > 0$ for all $t > 0$ in which $\omega^*_t < \lim_{t \to \infty} \omega^*_t$. Construct an alternative sequence $\hat{\omega}(t_1)$ that provides the same ex-ante expected utility to the worker as sequence ω^* where

$$\hat{\omega}(t_1)_t = \begin{cases} \omega^*_t & t \in [0, t_1) \\ \omega^*_{t_2} & t \geq t_1 \end{cases}$$

for some $t_1 > t_2 > 0$ such that $\omega^*_1 > \omega^*_0$. Note that $\hat{\omega}(t_1)$ has three requirements: first, that it is constant before time t_1, second, that the value it takes before time t_1 is achieved by sequence ω^* at some time t_2, and third, that the sequence yields the same utility as the original optimal sequence. The following lemma states that such a sequence always exists.

Lemma 1. For any optimal sequence ω^* there exists a sequence $\hat{\omega}(t_1)$ satisfying the required conditions.

Proof of Lemma: Take some $t_2 > 0$ and consider a sequence ω' that equals ω^*_t for all $t \geq 0$. Both $U(\omega', t)$ and $U(\omega^*, t)$ are clearly continuous in t. Since $u(\omega^*|t) > 0$ for all t by assumption, then there are two possibilities. First, there exists a unique $t_1 > t_2$ such that $U(\omega', t_1) = U(\omega^*, t_1)$, with $U(\omega', t) < U(\omega^*, t)$ for all $t > t_1$, in which case we have found the sought after t_1 for the specified t_2. Second, it could be that $U(\omega', t) > U(\omega^*, t)$ for all $t > 0$, in which case ω^* is not an optimal sequence.

Now define a new sequence $\tilde{\omega}(t_1)$ that takes on the pointwise maximum value of sequences $\hat{\omega}(t_1)$ and ω^*, that is,

$$\tilde{\omega}(t_1)_t = \begin{cases} \hat{\omega}(t_1)_t & t \in [0, t_2) \\ \omega^*_t & t > t_2 \end{cases}$$
As \(\tilde{\omega}(t_1)_t = \hat{\omega}(t_1)_t \) for all \(t \leq t_2 \), \(U(\tilde{\omega}(t_1), t) = U(\hat{\omega}(t_1), t) \) for all \(t \leq t_2 \). Since \(u(\omega^*|t) > 0 \) for all \(t \), \(U(\tilde{\omega}(t_1), t) > U(\hat{\omega}(t_1), t) \) for all \(t > t_2 \). Therefore, \(u(\tilde{\omega}(t_1)) > u(\hat{\omega}(t_1)) = u(\omega^*) \), which contradicts the optimality of sequence \(\omega^* \).

Figure B1: Sequences used in proof

(a)

(b)

(c)

Notes: This figure shows the construction of sequences to prove the desired result. Panel (a) shows the conjectured optimal sequence \(\omega^* \). Panel (b) shows \(\hat{\omega}(t_1) \), a sequence that is constant before time \(t_1 \) and gives the same utility as \(\omega^* \) (sequence \(\omega^* \) is plotted with dotted lines for comparison). Panel (c) shows sequence \(\tilde{\omega}(t_1) \), which equals the pointwise maximum of \(\omega^* \) and \(\hat{\omega}(t_1) \). Since utility is increasing along \(\omega^* \) by assumption, \(\tilde{\omega}(t_1) \) yields higher expected worker utility than the other sequences.

By the above logic, WLOG we restrict ourselves to worker strategies that never renegotiate wage along equilibrium path without the arrival of wage information. Letting
\[F(x) = P(\bar{w} \leq x), \text{ for all } \lambda < \infty \] worker \(i \) negotiates at the first moment she is hired to solve:

\[
 w^*_i \in \operatorname{argmax}_{w_i} \left(\frac{w_i}{\rho + \delta + \lambda} + \frac{\lambda}{\rho + \delta + \lambda} \mathbb{E} \left(\bar{w} | \bar{w} \geq w_i \right) \right) (1 - \bar{F}(w_i)) + \frac{\theta_i}{\delta + \rho} \bar{F}(w_i)
\] (11)

where the first term represents the expected discounted wage the worker receives, given the arrival rate of information, if matched with the firm. The second term represents the lifetime earnings of the worker if she exceeds \(\bar{w} \) and instead consumes her outside option for her lifetime. When \(\lambda = \infty \), the pricing scheme is a posted price in which all workers can elect to make an offer \(w^*_i = \bar{w} \) or unmatched with the firm.

In a series of steps, we modify the objective function without affecting the maximizer. For \(\lambda \in [0, \infty) \)

\[
 w^*_i \in \operatorname{argmax}_{w_i} \left(\frac{w_i}{\rho + \delta + \lambda} + \frac{\lambda}{\rho + \delta + \lambda} \mathbb{E} \left(\bar{w} | \bar{w} \geq w_i \right) \right) (1 - \bar{F}(w_i)) + \frac{\theta_i}{\delta + \rho} \bar{F}(w_i)
\]

\[
 \iff w^*_i \in \operatorname{argmax}_{w_i} \left(w_i \frac{\rho + \delta}{\rho + \delta + \lambda} + \frac{\lambda}{\rho + \delta + \lambda} \mathbb{E} \left(\bar{w} | \bar{w} \geq w_i \right) \right) (1 - \bar{F}(w_i)) + \theta_i \bar{F}(w_i)
\]

\[
 \iff w^*_i \in \operatorname{argmax}_{w_i} \left(w_i \frac{\rho + \delta}{\rho + \delta + \lambda} + \frac{\lambda}{\rho + \delta + \lambda} \mathbb{E} \left(\bar{w} | \bar{w} \geq w_i \right) - \theta_i \right) (1 - \bar{F}(w_i))
\]

\[
 \iff w^*_i \in \operatorname{argmax}_{w_i} \int_0^1 \left((1 - \Lambda) w_i + \Lambda \mathbb{E} \left(\bar{w} | \bar{w} \geq w_i \right) - \theta_i \right) \bar{f}(x) dx
\]

where \(\Lambda = \frac{\Lambda}{\rho + \delta + \lambda} \). When \(\lambda = \infty \), the scheme is equivalent to a posted price in which \(\Lambda = 1 \) (workers receive \(\bar{w} \) if they remain at the firm). Therefore, for any \(\rho, \delta > 0 \) there is a bijection between \(\lambda \) and \(\Lambda \) with higher \(\Lambda \) corresponding to more transparency.

For \(\lambda < \infty \) the firm solves:

\[
 \bar{w} \in \operatorname{argmax}_{\bar{w}} \int_0^w \frac{(v - y) \bar{g}(y) dy}{\rho + \delta + \lambda} + \bar{G}(w) \frac{\lambda}{\rho + \delta + \lambda} \frac{1}{\rho \delta + \lambda} (v - w)
\]

where \(\bar{G}(x) = P(\bar{w}_i \leq x) \). The first term gives the total discounted profits made by the firm given the arrival rate of information and the second term is the profit made from workers after renegotiating their wages to \(\bar{w} \) over the rest of their lifetimes in the firm. When \(\lambda = \infty \) the firm will hire every worker \(i \) with \(\theta_i \leq \bar{w} \) at a constant wage \(\bar{w} \). We can similarly manipulate the objective as with the worker problem:

\[
 \bar{w} \in \operatorname{argmax}_{\bar{w}} \int_0^w \left((v - (1 - \Lambda) y - \Lambda w) \bar{g}(y) dy \right)
\]

These manipulations collapse the set of equilibria of our problem into that of the well-known Chatterjee and Samuelson (1983) “double auction” in which a seller (worker) with a private value for a good (\(\theta_i \)) and a buyer (firm) with a private value for a good (\(v \)) submit sealed bids. If the bid of the buyer is at least as large as that of the seller, the
good switches hands at a price set be a predetermined convex combination of the two bids (determined by Λ). The first order conditions for workers and the firm are, respectively:

\[w^*_i - \theta_i = (1 - \Lambda) \frac{1 - F(w^*_i)}{f(w^*_i)} \]

(15)

\[v - \bar{w} = \Lambda \frac{\bar{G}(\bar{w})}{\bar{g}(\bar{w})}. \]

(16)

We know from Satterthwaite and Williams (1989) that the set of equilibria corresponds to solutions of the first order equations, and that the set of solutions to these equations, and therefore equilibria, is non-empty. Furthermore, given the equilibrium strategies of the firm (workers), workers (the firm) have a unique best response.

It now remains to consider the case in which \(u(\omega^*|t) = 0 \) for some \(t > 0 \). Let \(t = \inf_{t \geq 0} \{ t | u(\omega^*|t) = 0 \} \). We can create a new sequence \(\omega^{**} \) such that

\[\omega^{**}_t = \begin{cases} \omega^*_t & t \in [0, t) \\ \omega^*_t & t > t \end{cases} \]

(17)

Since \(u(\omega^*|t) = 0 \), \(\omega^{**} \) is also an optimal sequence. If \(t > 0 \) then replacing \(\omega^* \) with \(\omega^{**} \) in the earlier parts of this proof gives the desired result. If however, \(t = 0 \), we must take a different approach. Since \(u(\omega^*|t) \geq 0 \) for all \(t \geq 0 \), it must be the case that \(u(\omega^*|t) = 0 \) for all \(t \geq 0 \), i.e. that the worker is indifferent between ever renegotiating. Similarly to above, we can construct a sequence \(\hat{\omega}(t_1) \) that is constant over the first \(t_2 \) periods and ex-ante payoff equivalent to \(\omega^* \). But since \(u(\omega^*|t) = 0 \) for all \(t \) then it must also be optimal to never renegotiate from \(\hat{\omega}(t_1) = \omega^* \). In other words, this says that the agent is indifferent between initially asking for \(\omega^*_0 \) or \(\omega^*_t \) and never renegotiating, and moreover, both such sequences are optimal. But the right hand side of Equation 15 is strictly decreasing in the initial offer, meaning there cannot be two optimal constant sequences. Contradiction.

\[\blacksquare \]

Proof of Proposition 2:

Let \(\bar{w} = \beta(v) \) and let \(w^*_i = \gamma(\theta) \) and assume that a linear equilibrium exists. Workers are hired at initial wages in some range \([a, h]\) where \(0 \leq a \leq h \leq 1 \). By the linearity hypothesis, it must be the case that

\[\bar{w} = \begin{cases} v & 0 \leq v < a \\ a + \frac{h-a}{1-a}(v - a) & a \leq v \leq 1 \end{cases} \]

(18)

\[w^*_i = \begin{cases} a + \frac{h-a}{h}(\theta_i) & 0 \leq \theta_i \leq h \\ \theta_i & h < \theta_i \leq 1 \end{cases} \]

Furthermore, by definition \(\bar{F}(x) = P(\beta(v) \leq x) = F(\beta^{-1}(x)) \), and similarly \(\bar{G}(x) = G(\gamma^{-1}(x)) \). Inverting the functions in Equation 18 and plugging in to the distributions in
Equation 5 yields
\[
\bar{F}(x) = 1 - \left(1 - a + \frac{(x-a)(1-a)}{h-a}\right)^r, \quad a \leq x \leq h
\]
\[
\bar{G}(x) = \left(\frac{(x-a)h}{h-a}\right)^s, \quad a \leq x \leq h
\] (19)

Equations 3 and 4 give another set of equations for \(\gamma^{-1}(\cdot)\) and \(\beta^{-1}(\cdot)\). Plugging these in to the distributions in Equation 5 yields
\[
\bar{F}(x) = 1 - \left(1 - x - \Lambda \frac{G(x)}{g(x)}\right)^r, \quad a \leq x \leq h
\]
\[
\bar{G}(x) = \left(x - (1 - \Lambda) \frac{1-F(x)}{f(x)}\right)^s
\] (20)

Solving Equations 19 and 20 simultaneously results in a unique solution in which
\[
a = \frac{(1-\Lambda)s}{(s+\Lambda)r+(1-\Lambda)s}
\]
\[
h = \frac{(1-\Lambda)s+rs}{(s+\Lambda)r+(1-\Lambda)s}
\] (21)

As \(\bar{w}\) and \(w_i^v\) are pinned down by \(a\) and \(h\) due to linearity, there is a unique linear equilibrium.

\[\blacksquare\]

Proof of Proposition 3:

The proof of the first two points follows from noting that \(\frac{1-F(x)}{f(x)} = \frac{h-x}{r}\) and \(\frac{g(x)}{G(x)} = \frac{s}{x-a}\) for all \(x \in [a,h]\). Both of these terms are strictly decreasing indicating the desired results.

The third and fourth points remain to be shown. We first show \(\bar{w}\) is strictly decreasing in \(\Lambda\) for all \(v \in [a,1]\). Using Equations 18 and 21, we see that
\[
\bar{w} = a + \frac{s}{s+\Lambda} (v - a) \quad \text{for all } v \in [a,1] \quad (22)
\]

Differentiating with respect to \(\Lambda\) yields
\[
\frac{\partial \bar{w}}{\partial \Lambda} = \frac{\partial a}{\partial \Lambda} \left(1 - \frac{s}{s+\Lambda}\right) - \frac{s}{(s+\Lambda)^2} (v - a) \quad (23)
\]

Noting that \(\frac{s}{s+\Lambda} \in (0,1]\) and that from Equation 21
\[
\frac{\partial a}{\partial \Lambda} \text{ sign} = -r(s + 1) < 0 \quad (24)
\]

implies that \(\frac{\partial \bar{w}}{\partial \Lambda} < 0\) for all \(v \in [a,1]\). From Equation 19 we see that \(\frac{G(x)}{g(x)} = \frac{x-a}{s}\) for all \(x \in [a,h]\). Therefore, from Equation 4 we see that \(\bar{w} \to v\) for all \(v \in [0,1]\) as \(\Lambda \to 0\).
By virtue of the fact that \bar{w} is decreasing in Λ, it must also be the case that h is decreasing in Λ. (It is possible to directly verify this by computing $\frac{\partial h}{\partial \Lambda}$.) From Equation 19 we calculate

$$\frac{1-F(x)}{f(x)} = \frac{h-x}{r}$$

for all $x \in [a, h]$. Since h is decreasing in Λ, $\frac{1-F(x)}{f(x)}$ is also decreasing in Λ over this range. Therefore, from Equation 3 we see that w_i^* is strictly decreasing for $\theta_i \in [0, h]$, and $w_i^* \to \theta_i$ for all $\theta_i \in [0, 1]$ as $\Lambda \to 1$.

\[\blacksquare\]

Proof of Theorem 1:

1. For all $\theta_k < h$ we have from Equation 18 that $w_k^* = a + \frac{h-a}{h} \theta_k$. Therefore, for any relevant workers i and j, we have that $w_i^* - w_k^* = \frac{h-a}{h} (\theta_i - \theta_j)$. From Equation 21 we see that the derivative of this function is increasing in Λ, completing the claim.

2. Recall from Equation 12 that the expected lifetime earnings of a worker with outside option θ_i is $T(\Lambda, v, \theta_i) = (1 - \Lambda) w_i^* + \Lambda \bar{w} - \theta_i$. A sufficient condition for $T(\cdot, v, \theta_i) - T(\cdot, v, \theta_i)$ being strictly decreasing in Λ is that $\frac{\partial^2 T(\Lambda, v, \theta)}{\partial \theta \partial \Lambda} < 0$ for all $\Lambda, \theta \in [0, 1]$ and all $v \in [0, 1]$. From Equations 12 and 18 we see that

$$\frac{\partial^2 T(\Lambda, v, \theta)}{\partial \theta \partial \Lambda} = \frac{\partial (1 - \Lambda) \frac{h-a}{h}}{\partial \Lambda}$$

(25)

From Equation 21 we see that

$$\frac{\partial (1 - \Lambda) \frac{h-a}{h}}{\partial \Lambda} = \frac{\partial (1 - \Lambda)}{\partial \Lambda} \frac{r}{r+1-\Lambda} = \frac{-r}{r+1-\Lambda}$$

(26)

Since $\Lambda, r > 0$ we see that $\frac{\partial^2 T(\Lambda, v, \theta)}{\partial \theta \partial \Lambda} < 0$ as desired. To show that $T(\cdot, v, \theta_i) - T(\cdot, v, \theta_i) \to 0$ in Λ, we note that $T(\cdot, v, \theta_i) = (1 - \Lambda) w_i^* + \Lambda \bar{w}$. Since w_i^* is bounded below by θ_i then $T(\cdot, v, \theta_i)$ converges to $\bar{w}(\Lambda)$ for any θ_i.

\[\blacksquare\]

Proof of Theorem 2:

1. To see the equilibrium employment level of the firm, we calculate the probability that a worker is hired by the firm ex-ante. Let $E(r, s, \Lambda)$ be the expected equilibrium employment level in a market with distribution parameters r and s and transparency Λ. Then
\[E(r, s, \Lambda) \equiv \int_{0}^{h} Pr (\bar{w} \geq w_i^*(\theta)) g(\theta) d\theta \]
\[= \int_{0}^{h} Pr (v \geq a + \frac{1-a}{h} \theta) g(\theta) d\theta \]
\[= s \cdot (1 - a)^r \int_{0}^{h} (1 + \frac{1}{h} \theta)^r \theta^{s-1} d\theta \]
\[= (1 - a)^r h^s \frac{\Gamma(r+1)\Gamma(s+1)}{\Gamma(r+s+1)} \]
(27)

where the first equality comes from substituting in Equation 18, the second equality comes from substituting in the distribution of outside options from Equation 5 and the third from \(\Gamma(x) \equiv \int_{0}^{\infty} y^{x-1} e^{-y} dy \). As we see, transparency affects employment through changing \(a \) and \(h \).

We know from Equation 27 that
\[\argmax_{\Lambda} E(r, s, \Lambda) = \argmax_{\Lambda} (1 - a)^r h^s \]
(28)

Substituting in from Equation 21 and taking the first order condition with respect to \(\Lambda \) yields
\[\Lambda^* = \frac{r + 1}{r + s + 2} \]
(29)

It remains to show that the maximization problem in Equation 28 is concave in \(\Lambda \) over \([0, 1]\). Taking the first order condition of Equation 28 we see that
\[\frac{\partial (1 - a)^r h^s}{\partial \Lambda} = -\frac{r^2 s^2 (1 - a)^{r-1} h^{r-1} (r(\Lambda - 1) + (2 + s)\Lambda - 1)}{s(1 + r - \Lambda) + r\Lambda} \]
(30)

From this, since \(r, s > 0 \) and \(a < 1 \) we see that the first order condition in Equation 29 holds. Substituting in from Equation 5 gives us the particular form of \(\Lambda^* \) in the theorem. We further can calculate
\[\frac{\partial^2 (1 - a)^r h^s}{\partial \Lambda^2} \geq -rsh^s(1 - a)^r \left(s^3(r^2 + r(2 - \Lambda^2) + (1 - \Lambda^2)) \right) \]
\[-r\Lambda (r^2(2 - \Lambda) + 2r (\Lambda^2 - 3\Lambda + 2) + (4\Lambda^2 - 5\Lambda + 2)) \]
\[-s^2 (r^3 + r^2 (-2\Lambda^2 + 2\Lambda + 2) + r (-2\Lambda^2 + 4\Lambda + 1) + 2\Lambda (1 - \Lambda^2)) \]
\[-s (r^3 (-\Lambda^2 + 2\Lambda + 1) + r^2 (3 - 2\Lambda^2)) \]
\[-s (r(6\Lambda^2 - 6\Lambda + 3) + (-4\Lambda^3 + 7\Lambda^2 - 4\Lambda + 1)) \]

A sufficient condition for \(\frac{\partial^2 (1-a)^r h^s}{\partial \Lambda^2} < 0 \) for all \(\Lambda \in (0, 1) \) is that each of the polynomial terms involving \(\Lambda \) be strictly positive for \(\Lambda \in (0, 1) \). It is easy to check each of these polynomials separately to see that this sufficient condition is indeed satisfied. Therefore, extreme point \(\Lambda^* \) is the global maximizer of expected employment.
2. In equilibrium, there is an outside option cutoff for employment \(\theta^* \) such that all workers with outside options weakly less than \(\theta^* \) negotiate wages that are acceptable to the firm. Then employment is equal to \(G(\theta^*) \). Noting that a worker \(i \) with outside option \(\theta^* \) sets \(\bar{w}_i^* = \bar{w} \) it must be the case that \(G(\theta^*) = G(\bar{w}) \). We show that \(G(\bar{w}) \) is submodular in \(v \) and \(\Lambda \), and rely on monotone comparative statics techniques of Topkis (1998) to complete the result. From Equations 18 and 19 it is the case that for all \(v \geq a \)

\[
\bar{G}(\bar{w}) = \left(\frac{h}{1-a} (v-a) \right)^s
\]

We can use a monotonic transformation of \(\bar{G}(\bar{w}) \) to complete the claim, that is, we show submodularity of \(\frac{h}{1-a} (v-a) \) in \(v \) and \(\Lambda \).

\[
\frac{\partial \frac{h}{1-a} (v-a)}{\partial v} = \frac{h}{1-a} = \frac{(1-\Lambda)s + rs}{(s+\Lambda)r}
\]

Which is clearly decreasing in \(\Lambda \). Therefore, \(\bar{G}(\bar{w}) \) is submodular in \(v \) and \(\Lambda \).

\[\blacksquare\]

Proof of Theorem 3:

We show that the expected equilibrium profit of the firm is strictly increasing in \(\Lambda \). That the expected equilibrium profit of an arbitrary worker is strictly decreasing in \(\Lambda \) follows a similar calculation. We invoke the law of iterated expectations by first finding the firm’s profit for a particular draw \(v > a \) which we denote by \(\pi(v, \Lambda) \).

\[
\pi(v, \Lambda) = \int_a^{\bar{w}} (v - (1-\Lambda)y - \Lambda \bar{w}) \bar{g}(y)dy
\]

\[
= \int_a^{\bar{w}} (v - (1-\Lambda)y - \Lambda \bar{w}) s \left(\frac{h}{h-a} \right)^s (y-a)^{s-1}dy
\]

\[
= \frac{(\bar{w} - a)^s}{s+1} \left(\frac{h}{h-a} \right)^s (a(\Lambda - 1) - \bar{w}(\Lambda + s) + sv + v)
\]

where the second equality comes by using Equation 19. The ex-ante expected profit of the firm can be expressed as \(\pi(\Lambda) = \int_a^{1} \pi(v, \Lambda) f(v)dv \). A tedious, but straightforward calculation shows that \(\frac{\partial \pi(\Lambda)}{\partial \Lambda} > 0 \) for all \(r, s > 0 \) as desired.

\[\blacksquare\]
Increasing transparency does not increase profits for all firm types:

Example 1. Let \(v = 1 \) and let \(\mathbb{E}(\theta) = \mathbb{E}(v) = \frac{1}{2} \). This implies that \(r = s = 1 \). We can calculate the profit \(\pi(v, \Lambda) \) of the firm using Equation 33. We see that \(\pi(1, 1) = \frac{1}{2} \) while \(\pi(1, \frac{1}{2}) = \frac{9}{16} \).

\[\square \]

Proof of Theorem 4:

We begin this proof with a lemma.

Lemma 2. Let \(M \) denote the worker belief that the firm will select \(\Lambda = 1 \) in equilibrium. Then if \(M < 1 \) and \(\Lambda = c \) and \(\Lambda = d \) with \(c < d \) are each chosen with positive probability (density) then with positive probability a positive mass of workers will renegotiate wages before learning \(\bar{w} \), unless \(c = 0 \) and \(d = 1 \).

Proof of Lemma: We assume \(c \) and \(d \) are chosen with positive probability, but the proof is similar if these are instead selected with positive densities.

0 \(\leq c < d \leq 1 \): We prove this case by contraposition. Suppose the set of workers who renegotiate wages before learning \(\bar{w} \) has zero measure. Then playing \(\Lambda = d \) gives a strictly lower profit than \(\Lambda = c \), as it does not change initial bids and only increases the rate at which the firm must pay workers \(\bar{w} \). Therefore, any firm setting \(\Lambda = d \) has a profitable deviation instead playing \(\Lambda = c \), meaning that \(d \) cannot be played in equilibrium.

0 \(< c < d = 1 \): By the previous case we know that there is no \(e \in [0, 1) \setminus \{c\} \) that is chosen with positive probability. Therefore, if \(\Lambda = 1 \) almost every worker will receive \(\bar{w} \) in the instant they arrive at the firm (and therefore never renegotiate) and if \(\Lambda = c \) every worker will believe with probability 1 that \(\Lambda = c \). Therefore, when \(\Lambda = c \) is chosen worker beliefs do not drift over time so by Proposition 1 each worker will again negotiate in the instant they arrive and the instant in which they learn \(\bar{w} \). But then any firm setting \(\Lambda = c \) has a profitable deviation of instead playing \(\Lambda = 0 \), meaning that \(c \) cannot be played in equilibrium.

\[\square \]

To complete the proof of the theorem, suppose for contradiction that there is an equilibrium in which \(\Lambda = 0 \) and \(\Lambda = 1 \) are played with probabilities \(p_0 \) and \(p_1 \) where \(p_0 > 0 \). Then let \(v_L \) be the infimum of the firm types that selects \(\Lambda = 0 \) with positive probability. When a firm plays \(\Lambda = 0 \) almost all workers (except the zero measure set who learns \(\bar{w} \) in the instant they are hired) correctly deduce the firm choice, and that \(v \geq v_L \). Since \(v = \bar{w} \) when \(\Lambda = 0 \), each worker will set \(w_i^* \geq v_L \). Take a sequence \(\{v_\ell\}_{\ell \in \mathbb{N}} \to v_L \) from above. Then for any \(\epsilon > 0 \) there exists some \(\ell^* \) such that for all \(\ell > \ell^* \), \(v_\ell - v_L < \epsilon \). Then any firm type \(v_\ell \) with \(\ell > \ell^* \) will receive strictly less than \(\epsilon \) profit per worker it employs when it follows the equilibrium prescription and sets \(\Lambda = 0 \). Letting \(\epsilon \to 0 \), any of these firm types with \(v_\ell - v_L < \epsilon \) can make higher total profits by selecting \(\Lambda = 1 \) and setting \(\bar{w} = \frac{\bar{v}}{2} \). Therefore, there can be no
such equilibrium in which $p_0 > 0$. By inspection, we have exhausted all cases except that in which $p_1 = 1$. To see that an equilibrium exists in which no worker renegotiates wages and all firms select $\Lambda = 1$, consider the worker belief that $\Lambda = 0$ and $v = 1$ upon not seeing the wages of co-workers at the instant they are hired. The optimal response to these beliefs is to set $w_i^* = 1$ for all i, meaning that the firm will make zero profits if it deviates.

Proof of Proposition 4:

Suppressing time and worker indices, suppose a worker has negotiated a flow wage of w. Then in addition to her other choices, she must choose e to solve $\max_{e \in [0,1]} w \cdot e - \theta \cdot e$. For any $w \geq \theta$ the maximizer is $e = 1$. Therefore, when $w \geq \theta$ the equilibrium flow utility to the worker is $w - \theta$, as in the initial model. But by A1 a worker would never agree to a wage $w < \theta$. So in equilibrium, $e = 1$ and payoffs are the same as the original model. It is easy to see that given this, all other equilibrium choices will be unchanged.

Proof of Proposition 5:

\Leftarrow If $w \cdot e - \theta \cdot e - m(e, d) \leq 0$ for any $e \in [0,1]$ and any $d \in (0,1]$ then as soon as any worker learns \bar{w} the firm can either choose to increase her wage to \bar{w} and receive flow profits $v - \bar{w} \geq 0$ or receive flow profits of 0 otherwise from the worker who will put in zero effort. It is easy to see that given this, all other equilibrium choices will be unchanged.

\Rightarrow Clearly it cannot be the case that $m(e, d) = 0$ for some $d > 0$, or else the firm would never fully equalize wages. Suppose for contradiction that $w \cdot e - \theta \cdot e - m(e, d) = \epsilon > 0$ for some e, d. Let $e^*(d, w_i^*, \bar{w})$ be the optimal effort selected by worker i upon learning \bar{w} when receiving wage w_i^*. Note that since $m(e, d)$ is non-decreasing in d, $e^*(d, w_i^*, \bar{w})$ is non-increasing in d. The firm must solve

$$\max_{\bar{w} - w_i^* \leq d \leq 0} e^*(d, w_i^*, \bar{w})(v - \bar{w} + d) \tag{34}$$

The premise that the firm immediately sets i’s wage to $w_{i,t} = \bar{w}$ if i learns \bar{w} at time t implies that $d = 0$ is optimal, inducing $e = 1$. This implies that

$$v - \bar{w} \geq e^*(d, w_i^*, \bar{w})(v - \bar{w} + d) \forall d > 0 \tag{35}$$

which holds if and only if

42 Of course, if $w = \theta$ any $e \in [0,1]$ is a maximizer. For our purposes, we select $e = 1$ in this case, although, as we see, in equilibrium this will only affect a zero measure set of workers.
\[
 v - \bar{w} \geq d \cdot \frac{e^*(d, w^*_i, \bar{w})}{1 - e^*(d, w^*_i, \bar{w})} \forall d > 0
\]

We need to show that Equation 36 cannot hold for all \(\Lambda \). By sending \(\Lambda \to 0 \), the LHS of Equation 36 converges to 0, while by assumption there exists some \(d \) such that for all \(d' \in (0, d] \), the RHS is strictly greater than 0. Contradiction.

Proof of Proposition 6:

Taking the first order condition of \(\Lambda_m - \Lambda_f \) with respect to \(\lambda \) yields

\[
\frac{\alpha_m}{\alpha_f} = \frac{(\rho + \delta + \alpha_m \lambda)^2}{(\rho + \delta + \alpha_f \lambda)^2}
\]

The LHS of Equation 37 is constant in \(\lambda \) while the RHS is increasing in \(\lambda \) as \(\alpha_m > \alpha_f \). Therefore, there is a unique solution \(\lambda_c \) to this first order equation and thus a unique interior extreme point. As \(\Lambda_m - \Lambda_f > 0 \) for all \(\lambda \in (0, \infty) \) and it is continuously differentiable over this domain, the fact that \(\Lambda_m - \Lambda_f = 0 \) for \(\lambda \in (0, \infty) \) it must be that \(\lambda_c \) is a maximizer, and that \(\Lambda_m - \Lambda_f \) is single-peaked.

Theoretical Appendix

C. Multiple firms

In this section, we embed our analysis of pay transparency into a search model by including multiple firms, and show that many of the insights of the main model carry over to this setting. For tractability, we study only the cases of full privacy and full transparency. Let \(N = \{1, 2, ..., N\} \) be the set of firms, each with a value for labor \(v^n \) drawn iid from distribution \(F \). As before, workers have outside options drawn iid from distribution \(G \). Workers negotiate with firms in a predetermined order without the possibility of returning to an earlier firm. Without loss of generality, we assume that workers first meet with firm 1, then firm 2, and so on.

If a firm rejects a worker’s offer the two are ineligible to match at any point in the future, and the worker (instantly) moves to the next firm in the sequence. Although we do not do so for simplicity of exposition, it is possible to embed a search friction in this formulation without affecting the qualitative findings.\(^{43}\) A worker whose offer is rejected

\(^{43}\)Each time a worker’s offer is rejected, we could instead make the worker unable to meet with subsequent firms with probability \(\zeta \in (0, 1) \). Similarly to the relation between \(\lambda \) and \(\Lambda \) in the main body of the paper, the equilibrium consequences of this probabilistic search friction are identical to a friction which governs the (average) length of time it takes for a worker to find the next firm; in this context \(\zeta \) close to 0 corresponds to near-instant discovery of the next firm, while \(\zeta \) close to 1 corresponds to near-infinite time required to discover the next firm. Including such a search friction does not meaningfully change the remainder of the analysis.
by firm \(N \) becomes unemployed for her duration in the market and consumes her outside option. Workers continue to expire at rate \(\rho \) at which time they leave the market. A worker whose offer is accepted by firm \(n < N \) is replaced with a worker of identical outside option who moves on to firm \(n + 1 \) as if her offer had been rejected at firm \(n \).\(^{44}\)

Each firm \(n \) selects a maximum wage it is willing to pay for a worker \(\bar{w}^n(\nu^n) \in [0, 1] \), where the choice of \(\bar{w}^n \) is not immediately observed by workers. As before, each worker bargains for wages by making TIOLI offers to firms at any point during her employment, potentially renegotiating infinitely often. Workers who at anytime offer a wage greater than \(\bar{w}^n \) to firm \(n \) are permanently unmatched with the firm. Let \(W^n_t \) denote the set of wages firm \(n \) is paying to its employed workers, where \(W^n_0 = \{ \bar{w}^n \} \). We model transparency as a random arrival process; at time \(t \), workers matched to firm \(n \) observe \(W^n_t \) according to an independent Poisson arrival process with rate \(\lambda \in \{0, \infty\} \), where we take \(\lambda = \infty \) to mean that the process arrives whenever a worker first matches with a firm, and at every time while she is employed.

The timing of the stage game is as follows at each time \(t \geq 0 \):

1. **Entry:** New workers enter the market. Initialize \(m = 1 \), and \(\ell_i = 1 \) for each new worker.

2. **Search and Bargaining:**

 (a) Unmatched workers match with firm \(m \) if \(\ell_i = m \).

 (b) Each matched worker \(i \) learns \(W^n_t \) independently with arrival rate \(\lambda \).

 (c) Newly entering workers must bargain with the firm and any existing, matched worker can initiate bargaining. Any worker \(i \) who engages in bargaining makes a TIOLI offer \(w^n_{i,t} \in [0, 1] \) to firm \(m \). If \(w^n_{i,t} \leq \bar{w}^n \) then firm \(m \) pays \(i \) a flow wage \(w^n_{i,t} \) until \(i \) departs or attempts to renegotiate. If \(w^n_{i,t} > \bar{w}^n \) then worker \(i \) becomes unmatched.

 (d) For any \(i \) such that \(w^n_{i,t} > \bar{w}^n \) increase \(\ell_i \) by 1.

 (e) If \(m < N \), for all \(i \) such that \(w^n_{i,t} \leq \bar{w}^n \), create a new worker \(j \) with \(\theta_j = \theta_i \) and \(\ell_j = \ell_i + 1 \), increase \(m \) by 1 and repeat Step 2.

3. **Exit:** Existing workers depart at rate \(\rho \).

\(^{44}\)This assumption is made for tractability as this “cloning” greatly simplifies equilibrium characterization in our context, and is frequently adopted in the search literature (see, for example, Burdett and Coles (1999), Bloch and Ryder (2000), and Chade (2006)). This assumption may be even more defensible in a setting like TaskRabbit, in which jobs are short-term, and therefore, we can interpret a “cloned” worker as merely a worker who has completed a given task and is not eligible to re-complete it.
C.1. Equilibrium

We work backward to solve for the unique equilibrium. Workers meeting firm \(N \) face the same decision as workers in the base model: they face a firm with value \(v^N \) drawn from distribution \(F \) and are among an incoming cohort with outside options determined by distribution \(G \). We know from Equations 3 and 4 that under full privacy each worker \(i \) will offer firm \(N \) an initial amount \(w_i^N \) solving

\[
 w_i^N - \theta_i = \frac{1 - F(w_i^N)}{f(w_i^N)}
\]

and firm \(N \) will set \(\bar{w}^N = v^N \). Workers will not attempt to renegotiate. Under full transparency, \(N \) will set \(\bar{w}^N \) to solve

\[
 v^N - \bar{w}^N = G(\bar{w}^N) \quad \text{for } n < N
\]

and worker \(i \) will be employed at flow wage equal to \(\bar{w}^N \) if and only if \(\bar{w}^N \geq \theta_i \). Denote by \(\theta_{n,\lambda}^i \) the expected equilibrium lifetime utility (under transparency level \(\lambda \)) of a worker with outside option \(\theta_i \) immediately upon matching with firm \(n \) (before making an offer or learning wages through the transparency process), and denote by \(G_{n,\lambda} \) the distribution of \(\theta_{n,\lambda}^i \). Then, when facing firm \(N - 1 \), workers face will face the same decision but with \(\theta_i \) replaced with \(\theta_{N,\lambda}^i \), and firm \(N - 1 \) will face the same decision as firm \(N \) but with distribution \(G \) replaced with \(G_{N,\lambda} \). Inducting up toward the first firm, we can characterize the equilibrium actions of agents as the following:

\[\lambda = 0 : \]

Workers:

\[
 w_i^n - \theta_i^{n+1,0} = \frac{1 - F(w_i^n)}{f(w_i^n)} \quad \text{for } n < N
\]

Firms:

\[
 v^n = \bar{w}^n \quad \text{for } n \leq N.
\]

\[\lambda = \infty : \]

Workers:

\[
 w_i^n = \bar{w}^n 1_{\{\bar{w}^n \geq \theta_i^{n+1,\infty}\}} \quad \text{for } n < N
\]

Firms:

\[
 v^n - \bar{w}^n = \frac{G^{n+1,0}(\bar{w}^n)}{g^{n+1,0}(\bar{w}^n)} \quad \text{for } n < N.
\]
As θ_i is constant over time, $\theta_i^-\lambda$ is a non-increasing sequence, and strictly decreasing for workers with $\theta_i < 1$. Therefore, $\frac{G^-\lambda}{g-x}(x)$ is non-increasing in n. In words, workers’ outside options, which include the option value of bargaining with future firms, decreases as they move along the sequence of firms. Realizing this, under full transparency, earlier firms accept higher wages to incentivize workers to accept their offers rather than wait to meet future firms. We now provide results that are similar to the theorems in the main text.

Proposition 7. The expected average utility of workers is higher in equilibrium with $\lambda = 0$ than $\lambda = \infty$. The expected utility of firms is higher in equilibrium with $\lambda = \infty$ than $\lambda = 0$.

Proof:

We prove this result for workers, and the converse for firms is similar. By Myerson (1981) the expected utility of any worker who reaches firm N is higher under $\lambda = 0$ than $\lambda = \infty$. Therefore, $\theta_i^{N,0} > \theta_i^{N,\infty}$ for all θ_i. When meeting firm $N - 1$, worker θ_i is in expectation better off setting offering \tilde{w}_i^{N-1} solving

$$\tilde{w}_i^{N-1} - \theta_i^{N,\infty} = \frac{1 - F(\tilde{w}_i^{N-1})}{f(\tilde{w}_i^{N-1})}$$

than receiving the equilibrium offer under full transparency by the same Myerson (1981) argument. That worker i is able to offer \tilde{w}_i^{N-1} but instead chooses w_i^{N-1} that solves Equation 38 indicates that worker i is better off in expectation by revealed preference under full privacy. By induction, we see that worker i is better off at every firm she meets under full privacy.

Proposition 8. When $\lambda = \infty$ there is no wage dispersion between workers at the same firm in equilibrium.

Proposition 9. The ex-post employment maximizing level of transparency is weakly decreasing in v.

Proposition 10. When each firm can select $\lambda \in \{0, \infty\}$ as a function of v there is an essentially unique equilibrium outcome. In equilibrium, each firm selects $\lambda = \infty$ for all $v > 0$.

D. Firm Acceptance or Rejection of Each Offer

We introduce the game as one in which the firm selects a single \bar{w} and is bound to that for all time. More realistically, the firm may be able to accept offers on a case-by-case basis. In this section, we show that generalizing the game and restricting our attention to a class of time consistent equilibria does not change the analysis.

Amendments to the timing of the stage game are straightforward. Instead of selecting \bar{w} at $t = 0$, the firm selects “accept” or “reject” for each offer as it receives it. By accepting, the
firm is locked in to paying the agreed upon wage until the worker departs or makes another offer, and if the firm rejects, then the worker is ineligible to work at the firm.

As we are interested in the effect of transparency on wage negotiation, learning about the wages of others must convey information about the wage a worker can request. Intuitively, we want to use an equilibrium refinement like Markov perfection, as this includes subgame perfection (so that the firm cannot make non-credible threats of refusing to accept certain wage offers) and time consistency (seeing the wage of a higher paid co-worker means that a worker knows she can receive that wage if she offers it to the firm). Unfortunately, Markov perfect equilibria are not well-defined in our setting. Formally, we study equilibria satisfying A0, A1-3, A4’, and A5. We define A0 and A4’ below.

A0 The firm selects some function $\bar{w}(v)$, and accepts all offers $w_{i,t} \leq \bar{w}$ for any worker i and any time t, and rejects all others.

A4’ Let w_t^sup be the highest wage paid by the firm at time t if the worker observes wages at time t, and 0 otherwise. Off path, each worker i believes with probability 1 that the firm will accept any offer she makes that is no more than $\max\{w_t^*, w_t^\text{sup}\}$ and will reject all greater offers.

A0 restricts attention to firm strategies that set a maximum wage \bar{w} that is constant across workers and over time within worker. This assumption that the firm’s strategy is time-consistent within worker is a Markovian restriction; a firm can condition its acceptance strategy on v, previous offers made by the worker, and the history of the game. Note however, that given the constant inflow and outflow of workers, the only payoff relevant factor determining the state of the game from the firm’s point of view is v. Furthermore, this Markovian assumption is necessary to understand the effects of pay transparency and worker bargaining. Because each worker is infinitesimally small, without any restriction, the firm could essentially negate pay transparency by refusing to renegotiate with workers. For example, the firm could play a strategy that defines some $\bar{w}_{i,t}(v)$, which is the maximum wage it will accept from each i at time t. The firm could set $\bar{w}_{i,t} = v$ and $\bar{w}_{i,t'} = w_t^*$ for all $t' > t$, which corresponds to the “full privacy” world of $\lambda = 0$ we present later. Without this restriction, it is also possible to construct “sun spot” equilibria in which $\bar{w}_t(v)$ is a step function in t, that is at some time t' the firm’s maximum willingness to pay jumps upward.

The restriction that the maximum accepted offer is equal across workers is motivated by the assumption that the firm cannot wage discriminate against workers as it does not observe outside options. As we have limited our study to equilibria in which the firm’s willingness to pay is constant over time within worker, if the firm had a different willingness

45{Watson (2017) discusses some issues of equilibrium refinement in games with infinite action spaces.}

46{Massachusetts recently passed a law prohibiting firms from asking potential employees their current salaries during job interviews (http://www.nytimes.com/2016/08/03/business/dealbook/wage-gap-massachusetts-law-salary-history.html accessed 11/7/2016) and employers often have little information on workers’ outside options in online labor markets such as TaskRabbit. Even if firms are able to observe demographic factors associated with high or low outside options (perhaps such as gender), and would optimally set a different maximum wage for these groups, any such strategy would be in violation of the Equal Pay Act of 1963, opening up the firm to litigation. Therefore, the analysis would be unchanged if instead the firm could observe the demographics of workers but could not select separate wage policies for different groups.}
to pay across workers, it would imply that the firm has a different willingness to pay for two workers i and j at the moment each of these workers enters the market. Due to lack of information about outside options, the firm cannot discriminate in this fashion over a positive measure set of workers in equilibrium. We formally include the assumption that the maximum accepted offer is equal across workers here to rule out equilibria which vary only upon a measure zero set of workers.

$A4'$ is a special case of $A4$ and states that off path, conditional on learning the wages of co-workers, workers believe they can receive no more than w_i^{sup} and will not be rejected if they offer w_i^{sup}. In other words, workers believe that even off path the firm plays a time consistent strategy as in $A0$. Such beliefs are potentially reasonable in the presence of equal pay laws.

All of the results in the paper go through under this expanded game if we restrict attention to equilibria satisfying the above conditions. Indeed, all of the results until those in Section III.D go through if we relax off path beliefs in $A4'$ to workers believing that with probability 1 that any offer weakly less than w_i^{sup} will be accepted. Nevertheless, this relaxed version of $A4'$ can create an additional equilibrium outcome in the game with endogenous firm selection of transparency in which all firm types pool on $\Lambda = 0$. Further details are available from the authors upon request.

E. Extensions of Bargaining Protocol

In this section, we discuss alternative bargaining protocols that generate qualitatively similar findings as the TIOLI bargaining scheme studied in the body of the paper. The first two cases consider situations in which workers are not able to rebargain as effectively as in the base model, either by being unable to capture the entire difference between their initial offers and \bar{w}, or sometimes being unable to rebargain. There is an injection between the equilibria of these games and the game studied in the body of the paper, in which the additional bargaining friction result in de facto lower levels of transparency. The last extension shifts the bargaining power from the workers to the firm probabilistically, giving the firm the ability to propose wages to a fraction of workers.47 We show that the equilibrium outcome for workers receiving wage offers is independent of the level of transparency, and the equilibrium outcome for workers proposing wages is identical in this extended game to that of the original game. Therefore, transparency has the same equilibrium effects in this game, just affecting a smaller portion of the workers.

E.1. Workers can only rebargain for part of surplus

There are a number of possibilities as to why workers may not be able to fully close the gap between their initial wage and \bar{w}. This could arise from a game in which workers and firm engage in alternating offer bargaining with disagreement amounts set to w_i^*. It could even occur under a worker TIOLI offer scheme under a “non-Markovian” (i.e. does not satisfy condition $A0$ in Section D) equilibrium in which the firm’s strategy is equilibrium

47This extension is similar to a modeling choice in Halac (2012) which changes the effective bargaining power of two parties by varying the probability of each agent making a TIOLI offer.
is to reject rebargaining offers that request more than a fixed proportion of the difference between a worker's initial bid and \bar{w}. Formally, suppose that the firm selects \bar{w} which is the maximum wage it accepts from any worker in the initial period a worker is hired. At any subsequent period, the firm rejects any renegotiation offer strictly greater than $w^*_i + \alpha(\bar{w} - w^*_i)$ where $\alpha < 1$.

Proposition 11. The (unique) linear equilibrium of the game in which workers can only rebargain for $\alpha \in [0, 1)$ fraction of the difference between \bar{w} and w^*_i and transparency level $\Lambda < 1$ is equivalent to that of the original game with transparency level $\alpha \Lambda$.

Proof:

For any α the equilibrium of this game is clearly equivalent to that of the original game when $\lambda = \infty$ ($\Lambda = 1$). When $\lambda < \infty$, following the same logic as the main case, workers negotiate at most twice in equilibrium, once when they are first hired, and once when they learn \bar{w} through the transparency process. Letting $\bar{F}(x) = P(\bar{w} \leq x)$, worker i negotiates at the first moment she is hired to:

$$\text{argmax}_{w^*_i} \left(\frac{w^*_i}{\rho + \delta + \lambda} + \frac{\lambda}{\rho + \delta + \lambda} \left[w^*_i + \alpha \left(\frac{\mathbb{E} (\bar{w} | \bar{w} \geq w^*_i) - w^*_i}{\delta + \rho} \right) \right] \right) (1 - \bar{F}(w^*_i)) + \frac{\theta_i}{\delta + \rho} \bar{F}(w^*_i)$$

(43)

where the first term represents the weighted (by λ) expected wage the worker receives if matched with the firm, and the second term represents the lifetime earnings of the worker if she exceeds \bar{w} and instead consumes her outside option for her lifetime.

As before, we modify the objective function without affecting the maximizer, and show that this is equivalent to solving:

$$\text{argmax}_{w^*_i} \int_{0}^{1} ((1 - \Lambda) w^*_i + \Lambda (w^*_i + \alpha(x - w^*_i)) - \theta_i) \tilde{f}(x)dx$$

$$= \text{argmax}_{w^*_i} \int_{0}^{1} ((1 - \alpha \Lambda) w^*_i + \alpha \Lambda x - \theta_i) \tilde{f}(x)dx$$

(44)

where $\Lambda = \frac{\lambda}{\rho + \delta + \lambda}$ for all $\lambda \in [0, \infty)$. In equilibrium, the firm sets $\bar{w}(v)$ to

$$\text{argmax}_{\bar{w}} \int_{0}^{\bar{w}} \frac{(v - y) \bar{g}(y)dy}{\rho + \delta + \lambda} + \bar{G}(\bar{w}) \frac{\lambda}{\rho + \delta + \lambda} \left[v - \int_{0}^{\bar{w}} y \bar{g}(y)dy + \alpha \left(\bar{w} - \int_{0}^{\bar{w}} y \bar{g}(y)dy \right) \right]$$

(45)

where $\bar{G}(x) = P(w^*_i \leq x)$. The first term gives the total discounted profits made by the firm before the workers experience an event (seeing the wage profile or perishing) and the second term is the profit made from workers after renegotiating their wages to the maximum allowable level over the rest of their lifetimes in the firm. We can similarly manipulate the objective as with the worker problem:
\[
\arg\max_{\bar{w}} \int_0^{\bar{w}} (v - (1 - \alpha \Lambda) y - \alpha \Lambda \bar{w}) \bar{g}(y) \, dy
\] (46)

Comparing Equations 44 and 46 to Equations 1 and 2, respectively, completes the proof.

The results presented in the body of the paper go through in this setting with minor notational changes. The only significant difference is Theorem 2. When \(\alpha \) is sufficiently small, the employment maximizing level of transparency may no longer be in the interior. It is possible to show that there exists \(\epsilon > 0 \) such that for all \(\alpha < \epsilon \) full transparency maximizes expected employment if and only if full transparency yields higher expected employment than full privacy. Intuitively, when \(\alpha \) is small, workers are unable to effectively rebargain, creating the possibility that full transparency (which requires no rebargaining in equilibrium) maximizes employment.

\[2.2. \quad \text{Workers are probabilistically able to rebar}g\]n

Now suppose that each worker is able to rebargain with probability \(\alpha \) after the first moment she is matched with the firm. Workers who are able to rebargain can take the same actions as in the standard game, while the \(1 - \alpha \) fraction of workers who cannot rebargain can take no further strategic actions after specifying \(w^*_i \). Workers do not ex-ante know which type they are, and only realize their type after they make the initial offer to the firm (simultaneously with acceptance or rejection of offer).

Proposition 12. The (unique) linear equilibrium of the game in which each worker can independently rebar-gain with probability \(\alpha \in [0, 1) \) and transparency level \(\Lambda < 1 \) is equivalent to that of the original game with transparency level \(\alpha \Lambda \).

Proof:

Similar to the proof of Proposition 11.

Just as with the extension in Appendix E.1, the results from the body of the paper go through with appropriate modification to Theorem 2.

\[2.3. \quad \text{Two types of workers, receivers and proposers} \]

For this case, suppose that some known fraction of workers are receivers (we can think of these as workers who are bad at bargaining) who are unable to make wage offers to the firm and receive a wage offer from the firm when they are first hired. If a receiver accept the offer, she is locked in to working at the specified wage until she perishes. If she rejects, she is permanently unmatched from the firm. The remaining workers operate as before, and make TIO LI offers (potentially infinitely often) to the firm upon matching. The type of each worker is independent of \(\theta_i \), and is known to both the worker and the firm.
Proposition 13. The (unique) linear equilibrium of the game in which some fraction of workers and receivers and others are proposers is as follows:

1. The firm offers all receivers an initial wage of \bar{w} which is the same as \bar{w} in the original game with $\Lambda = 1$,

2. The (unique) linear equilibrium outcome for proposers with transparency level Λ is equivalent to that of the original game with transparency Λ.

Proof:

1. This point follows immediately from the fact that the worker type (proposer or receiver) is independent of θ_i and that θ_i is privately known by each worker.

2. As \bar{w} is the optimal posted price wage, the firm cannot maximize profits if it sets $\bar{w} < \bar{w}$. Therefore, when any proposer receives wage information through the transparency process, in equilibrium she will learn $\bar{w} \geq \bar{w}$ and will successfully demand a flow wage of \bar{w}. Therefore, a proposer’s information is not affected by the presence of receivers, and the unique linear equilibrium choices of firm, \bar{w}, and proposer, w_i^*, are unchanged from the base model.

\blacksquare
F. Experimental Appendix

Here, we show the experimental interface for workers and managers in our experiment. We show the following treatment: $5 manager budget per page, per worker; common chat-room (pay transparency), manager is instructed to accept all worker bids below budget without bargaining. Other treatments are similar, with changes on Page 5 of these instructions as described in the main text. Note that we did not actually complete any of the transcription task for the purposes of this illustration, and so the accuracy on Page 11, Workers is calculated at 0.0% for all pages.

Page 1, All Subjects

Introduction

There are 4 people simultaneously assigned to this group. You will either manage or carry out a transcription task. Those who successfully complete this task earn over $10 on average, some earn more than $20.

First we’ll ask you some questions. Then you will interact with other participants. Please do this first part promptly so other participants do not have to wait for you: But read questions carefully because you will not be able to return to your answers after proceeding to the next page.

The transcription part, for the bonus, can be done any time in the next 48 hours.
Example of Transcription Work

Transcription Example

Text Image:

```
1,096 9 581 156 8 7
5 - 3 - - -
35 3 6 8 1 -
727 1 428 95 6 7
```

Transcription:

```
1,096 9 581 156 8 7
5 - 3 - - -
35 3 6 8 1 -
727 1 428 95 6 7
```

Now look at the sample page below. How many minutes do you think it would take you to transcribe the page below? This information will not affect your eligibility for a bonus in any way.

How many minutes?

Next

Sample Page:

```
<table>
<thead>
<tr>
<th>117,380</th>
<th>115,174</th>
<th>139,897</th>
<th>195,461</th>
<th>34,397</th>
<th>9,129</th>
<th>100</th>
<th>72</th>
<th>31</th>
<th>4</th>
<th>10</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>121,800</td>
<td>120,820</td>
<td>142,350</td>
<td>88,599</td>
<td>36,350</td>
<td>12,689</td>
<td>31</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>71</td>
<td>11</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,428</td>
<td>1,464</td>
<td>408</td>
<td>130</td>
<td>57</td>
<td>34</td>
<td>28</td>
<td>31</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>793</td>
<td>295</td>
<td>94</td>
<td>34</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>100</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
</tr>
<tr>
<td>164</td>
<td>164</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>50</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>2,056</td>
<td>583</td>
<td>152</td>
<td>20</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
```
Cash Preferences

Below you are presented with 5 scenarios. In each you will be given the choice between being paid for completing a page of transcription at 95% accuracy within 48 hours, or receiving $9 without having to do any transcription, also 48 hours from now.

If you are one of 20 survey respondents selected at random, we will randomly select one of your choices and enact it. You should answer honestly, because one of your choices might happen. (Note: Information on this page will be kept private from all participants.)

Which would you prefer?
- $15, for 5 pages transcribed ($3 per page, 95% accuracy)
- $9, no transcription required

Which would you prefer?
- $20, for 5 pages transcribed ($4 per page, 95% accuracy)
- $9, no transcription required

Which would you prefer?
- $25, for 5 pages transcribed ($5 per page, 95% accuracy)
- $9, no transcription required

Which would you prefer?
- $30, for 5 pages transcribed ($6 per page, 95% accuracy)
- $9, no transcription required

Which would you prefer?
- $35, for 5 pages transcribed ($7 per page, 95% accuracy)
- $9, no transcription required
Bid for Work

Now tell us your single page bid (the price for ONE page) to do up to 6 pages just like the example (with 55% accuracy).

The manager will start with this information to negotiate a price for your services.

How much is your bid price per single page?

$

Next
Manager - Chat Room

You are the Manager. Please chat with the 3 employees below. They should be here now.

You have a maximum budget of $5 per page. The employees were not aware of your budget when they bid. Please confirm each employee’s bid amount in the chat window and accept any that were $5 or less. If, and only if, the worker agrees to the original bid will the budget be split between you accordingly. You are not able to renegotiate.

After this chat, employees will be taken to a screen to transcribe scanned pages, which will be checked for accuracy. For each page completed above 95% accuracy, they will receive their bid and you will receive the difference between $5 and the confirmed price. If the work is not submitted, or does not achieve at least 95% accuracy, no one will be paid for that page. For example, if you confirm $4 per page for all three workers, who then complete the work, you will be paid: ($5 - $4) x (3 people) x (5 pages each) = $15

If some of the employees bid too high, you can still profit from your other agreements, and you will still be paid for the HIT. Decline bids above your $5 budget. Do not renegotiate.

Chat Room:

<table>
<thead>
<tr>
<th>Employee 3</th>
<th>Sample text 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee 2</td>
<td>Sample text 2</td>
</tr>
<tr>
<td>Employee 1</td>
<td>Sample text 3</td>
</tr>
<tr>
<td>Manager (Me)</td>
<td>Sample text 4</td>
</tr>
</tbody>
</table>

Enter the per-page amounts here.

Employee 1 bid $4.00 for each page

Did you confirm the bid in the chat room? If you did, and it’s not higher than $5, enter it here. (Enter 0 if too high) $
Did you agree the worker would do the transcription at this price? ○ Yes ○ No

Employee 2 bid $6.00 for each page

Did you confirm the bid in the chat room? If you did, and it’s not higher than $5, enter it here. (Enter 0 if too high) $
Did you agree the worker would do the transcription at this price? ○ Yes ○ No

Employee 3 bid $5.00 for each page

Did you confirm the bid in the chat room? If you did, and it’s not higher than $5, enter it here. (Enter 0 if too high) $
Did you agree the worker would do the transcription at this price? ○ Yes ○ No

If there is a discrepancy between what you enter and what the employee enters, then neither party will receive any additional bonus for work completed. Please make sure you confirm!

You will receive any payment owed via an MTurk Bonus

Done
Employee 1 - Chat Room

Everyone is here. You, 2 other employees, and a manager.

Your initial bid to the manager was $4.00 for each page. The manager is here to discuss it with you. You must agree to a price in order to submit the transcription work for a bonus. It is okay to disagree and exit. You will still be paid for the HIT.

<table>
<thead>
<tr>
<th>Employee 3</th>
<th>Sample text 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee 2</td>
<td>Sample text 2</td>
</tr>
<tr>
<td>Employee 1 (Me)</td>
<td>Sample text 3</td>
</tr>
<tr>
<td>Manager</td>
<td>Sample text 4</td>
</tr>
</tbody>
</table>

If there is a discrepancy between what you enter and what the manager enters, then you will not receive a bonus for work completed. Please make sure you agree!

Enter the amount you confirm here. Enter 0 if you cannot agree:

$

You and the manager must agree on your per-page price before you proceed. If your work does not achieve at least 95% accuracy, you will not be paid for that page. Selecting Deny will end your chat session, you cannot come back.
Transcription task 1/5

You will be shown 5 pages of transcription, one on each screen. When you click next, your transcription of the first page will be submitted and you will be presented with a fresh link to a second page of transcription and a blank text box, and so on until the fifth page. After you submit the fifth page we ask a few basic demographic questions and give you a code to submit your HIT.

Please transcribe the numbers from the table in the image into the box below.

You will be paid $5.00 for this page if you submit work that is at least 95% accurate, and if $5.00 matches the price the manager confirms. Thank you!

Click here to open image for transcription (opens in new tab or window)

You should only enter the NUMBERS from the table, none of the row or column headings. (No words)

Next

Do not click until you have finished the transcription!

Hint: if you prefer to work in a different format such as an Excel spreadsheet, simply export to csv (comma separated delimiter) copy and paste results here.

Do not complete this transcription if you did not actively AGREE with the manager about the per-page price.
Summary

<table>
<thead>
<tr>
<th>Transcription #</th>
<th>Length of assigned text</th>
<th>Length of text entered</th>
<th>Levenshtein distance</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1232</td>
<td>0</td>
<td>1232</td>
<td>0.0 %</td>
</tr>
<tr>
<td>2</td>
<td>524</td>
<td>0</td>
<td>524</td>
<td>0.0 %</td>
</tr>
<tr>
<td>3</td>
<td>508</td>
<td>0</td>
<td>508</td>
<td>0.0 %</td>
</tr>
<tr>
<td>4</td>
<td>1001</td>
<td>0</td>
<td>1001</td>
<td>0.0 %</td>
</tr>
<tr>
<td>5</td>
<td>888</td>
<td>0</td>
<td>888</td>
<td>0.0 %</td>
</tr>
</tbody>
</table>

You transcribed 0 pages better than 95% accuracy.
Your agreed price per-page was $5.00
Therefore your bonus is $0.00

Next
Survey

Enter your year of birth:

What is your gender?

please select

Next
Survey

How much experience do you have managing others?

How much experience do you have doing transcription work?

What is your highest level of education?

On an average work day, how much money does your household earn from employment? (Don’t count government payments or other sources):

$
Thank You

You're done, thank you. Click next to complete the HIT.

Next
G. Survey materials

We presented a series of vignettes to approximately 5,000 workers on Mechanical Turk. Each vignette embeds the full job description in a short story about two people that have placed private bids for the job, and meet each other for the first time (or do not) upon commencing the work. The story is followed with four questions that require an answer on a 1 to 10 scale, and a brief explanation; how likely is it that [name] and [name] will discover what the other one is being paid for the same work? that [names] could be a leader or role model and influence the work of [name]? that the employer sees the effort that each of them individually contributed? and that the same employer would hire [names] in the future for a similar purpose?

We randomly vary the names of the two workers included in the vignette to be sound either male or female, Alex and Sam or Alexis and Samantha. We also solicit the gender of the survey respondent.

G.0.1. Vignettes

Below we describe a brief posting for a real job that takes place in a real city. The employer asks workers on an online labor platform to submit the price they want to complete the job.

Image that two people, Sam and Alex, offer two different prices to do the job. Sam and Alex haven’t met before and they don’t know the other’s price for the job because they submitted these offers from their own computers. The employer chooses Sam and Alex on the platform, and they arrange a time to do the work.

Below is a description of the job. Please read the description and answer the questions about what happens when Sam and Alex begin working.

[Insert job description]

Answer on a scale of 0 through 10. A value of 0 means they definitely will not. A value of 1 means the odds are 1 in 10. In other words, if it happened 10 times, they would probably only learn about each other’s pay on one of those occasions. A value of 10 means that they would learn about it every time.

1. How likely do you think Sam and Alex will discover what the other one is being paid for the job?

2. Is this the type of job where either Sam or Alex could be a leader or role model and encourage the other to do a better or worse job?

3. Will the employer be able to see what each of them individually contributed?
4. What is the likelihood that either Alex or Sam would be hired by the same employer in the future for something similar?